Advertisement

Theory of X-Ray Emissions in Solar Flaring Loops

  • Guangli HuangEmail author
  • Victor F. Melnikov
  • Haisheng Ji
  • Zongjun Ning
Chapter
  • 247 Downloads

Abstract

X-rays are one of the important way to observe and study the solar flares which are able to radiate the emissions with a wide spectrum. Observationally, the soft and hard X-rays are dependent on the energy, the low and high bands respectively. Physically, the former is related with the thermal plasma, while the latter is produced by the NT electrons. Therefore, the solar flares show smoothed light curves of SXRs, but many spikes or sub-peaks with a short timescale (down to 10 milliseconds dependence on the time resolution of the instruments) are superposed on the HXR light curves. From the spatial topology, the solar flares usually display a loop system, and the SXRs are bright of the whole loop, while the HXRs exhibit an LT and double FP sources associated with it. The observations with a broad dynamic energy range and a high sensitivity provide the second coronal source , named the above-the-LT source during the solar flare.

References

  1. 1.
    Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 158, 753–770 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    Lin, R., Schwartz, R., Kane, S., Pelling, R., Hurley, K.: Solar hard X-ray microflares. Astrophys. J. 283, 421–425 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    Lin, R., Barnes, W., Hurley, K., Smith, D., Pelling, R.: A search for solar hard X-ray microflares near solar minimum. Bull. Am. Astron. Soc. 21, 847–847 (1989)Google Scholar
  4. 4.
    Fleishman, G., Yastrebov, S.: On the harmonic structure of solar radio spikes. Sol. Phys. 154, 361–369 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Brown, J.: The directivity and polarisation of thick target X-Ray bremsstrahlung from solar flares. Sol.Phys. 26, 441–459 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    Lin, R., 65 colleagues: The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Physics 210, 3–32 (2002)Google Scholar
  7. 7.
    Ning, Z.: Microwave and hard X-Ray spectral evolution in two solar flares. Astrophys. J. 659, L69–L72 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Battaglia, M., Benz, A.: Relations between concurrent hard X-ray sources in solar flares. Astron. Astrophys. 456, 751–760 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Ning, Z.: Speed distributions of merging X-Ray sources during chromospheric evaporation in solar flares. Sol. Phys. 273, 81–92 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Ning, Z.: Chromospheric evaporation in solar flares. EAS Publ. Ser. 55, 245–249 (2012)CrossRefGoogle Scholar
  11. 11.
    Ning, Z., Cao, W.: Investigation of Chromospheric evaporation in a neupert-type solar flare. Astrophys. J. 717, 1232–1242 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Huang, G.L.: Diagnostics of the Low-Cutoff energy of nonthermal electrons in solar microwave and hard X-Ray bursts. Sol. Phys. 257, 323–334 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Miyamoto, K.: Plasma Physics for Nuclear Fusion, pp. 101. Science Press (Chapter 5). Science (1981)Google Scholar
  14. 14.
    Melrose, D.B.: Plasma Astrophysics. Cambridge University Press, London (1980)Google Scholar
  15. 15.
    Sharma, R.R., Vlahos, L.: Comparative study of the loss cone-driven instabilities in the low solar corona. Astrophys. J. 280, 405–415 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    Landau, L.D.: J. Phys. 10, 45–49 (1946)Google Scholar
  17. 17.
    Landau, L.D.: Zh. E. T. F. 7, 203–209 (1937)Google Scholar
  18. 18.
    Lee, J., Gary, D.E.: Solar microwave bursts and injection pitch-angle distribution of flare electrons. Astrophys. J. 543, 457–471 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Sakao, T., Kosugi, T., Masuda, S., Yaji, K., Inda-Koide, M., Makishima, K.: Characteristics of hard X-ray double sources in impulsive solar flares. Adv. Space Research 17, 67–70 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Huang, G.L.: Initial pitch-angle of narrowly beamed electrons injected into a magnetic mirror, formation of trapped and precipitating electron distribution, and asymmetry of hard X-ray and microwave footpoint emissions. New Astron. 12, 483–489 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Veronig, A.M., Brown, J.C.: A coronal thick-target interpretation of two hard X-ray loop events. Astrophys. J. Lett. 603, L117–120 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Krucker, S., Hurford, G.J., Mackinnon, A.L., Shih, A.Y., Lin, R.P.: Coronal X-ray bremsstrahlung from solar flare accelerated electrons. Astrophys. J. Lett. 678, L63–66 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Krucker, S., Battaglia, M., Cargill, P.J., et al.: Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155–208 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Petrosian, V., Donaghy, T.Q.: On the spatial distribution of hard X-rays from solar flare loops. Astrophys. J. 527, 945–957 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Stepanov, A.V., Tsap, Y.T.: Electron whistler interaction in coronal loops and radiation signatures. Sol. Phys. 211, 135–154 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Petrosian, V., Liu, S.: Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. Astrophys. J. 610, 550–571 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Fletcher, L., Martens, P.C.H.: A model for hard X-ray emission from the top of flaring loops. Astrophys. J. 505, 418–431 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, B., Bastian, T.S.: The role of inverse Compton scattering in solar coronal hard X-ray and \(\gamma \)-ray sources. Astrophys. J. 750, 35–51 (2012)Google Scholar
  29. 29.
    Melnikov, V.F., Charikov, Y.E., Kudryavtsev, I.V.: Spatial brightness distribution of hard X-rays along flare loops. Geomagn. Aeron. 53, 863–866 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Melnikov, V.F., Gorbikov, S.P., Reznikova, V.E., Shibasaki, K.: Spatial distribution of relativistic electrons in microwave flare loops. Izv. Akad. Nauk, Ser. Fiz. 70, 1472–1474 (2006)Google Scholar
  31. 31.
    Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution. Astrophys. J. 697, 735–746 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Charikov, Y.E., Melnikov, V.F., Kudryavtsev, I.V.: Intensity and polarization of the hard X-ray radiation of solar flares at the top and footpoints of a magnetic loop. Geomagn. Aeron. 52, 1021–1031 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Melnikov, V.F., Kudryavtsev, I.V., Charikov, Y.E.: Directivity of hard X-ray and gamma emissions from a flare loop. In: Stepanov, A.V., Nagovitsyn, Y.A. (eds.). Proceedings Pulkovo All-Russian Annual International Conference on Solar Physics, pp. 275–278. St. Petersburg (2012)Google Scholar
  34. 34.
    Kontar, E.P., Ratcliffe, H., Bian, N.H.: Wave-particle interactions in non-uniform plasma and the interpretation of hard X-ray spectra in solar flares. Astron. Astrophys. 539, 43–51 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Gorbikov, S.P., Melnikov, V.F.: Numerical solution of the Fokker–Planck equation for modeling the particle distribution in solar magnetic traps. Mat. Model. 19, 112–122 (2007)Google Scholar
  36. 36.
    Gluckstern, R.L., Hull, M.H.: Polarization dependence of the integrated bremsstrahlung cross section. Phys. Rev. 90, 1030–1035 (1953)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Bai, T., Ramaty, R.: Backscatter, anisotropy, and polarization of solar hard X-Rays. Astrophys. J. 219, 705–726 (1978)ADSCrossRefGoogle Scholar
  38. 38.
    Zharkova, V.V., Kuznetsov, A.A., Siversky, T.V.: Diagnostics of energetic electrons with anisotropic distributions in solar flares. I. Hard X-rays bremsstrahlung emission. Astron. Astrophys. 512, A8–26 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Melnikov, V.F., Charikov, Yu, E., Kudryavtsev, I.V.: Directivity and polarization dynamics of hard X-ray and gamma-ray emission of a flare loop. Geomagn. Aeron. 55, 983–990 (2015)Google Scholar
  40. 40.
    Aschwanden, M.J., Brown, J.C., Kontar, E.P.: Chromospheric height and density measurements in a solar flare observed with RHESSI II. Data Anal., Sol. Phys. 210, 383–405 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guangli Huang
    • 1
    Email author
  • Victor F. Melnikov
    • 2
  • Haisheng Ji
    • 1
  • Zongjun Ning
    • 1
  1. 1.Purple Mountain ObservatoryNanjingChina
  2. 2.Pulkovo ObservatoryRussian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations