Theory of MW Emissions of Solar Flaring Loops

  • Guangli HuangEmail author
  • Victor F. Melnikov
  • Haisheng Ji
  • Zongjun Ning


It is well known that there are various acceleration mechanisms in solar flares (see review papers Aschwanden, Space Sci Rev 101:1–227, 2002, [1], Vlahos, The high energy solar corona: waves, eruptions, particles, Springer, Berlin, p 15, 2007, [2]), including DC electric field (in current sheets or twisted magnetic loops), stochastic acceleration (in plasma wave turbulence and microflares), shock acceleration (in MHD shocks and standing shocks), and electron induced acceleration (in collapsed magnetic trapping). Different mechanisms make accelerated electrons inject into different parts of flaring loops, such as nearby one loop top (LT) by the acceleration in a perpendicular current sheet (called as standard model), and also possibly in a region with strong turbulence, or nearby one foot-point (FP) of a big magnetic loop in a double loop system, or in total twisted magnetic loop with a great amount of microcurrent sheets. Moreover, different mechanisms produce different pitch-angle distributions (isotropic and parallel or perpendicular anisotropic ones).


  1. 1.
    Aschwanden, M.J.: Particle acceleration and kinematics in solar flares - a synthesis of recent observations and theoretical concepts (invited review). Space Sci. Rev. 101, 1–227 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Vlahos, L.: Magnetic complexity, fragmentation, particle acceleration and radio emission from the sun. The High Energy Solar Corona: Waves, Eruptions, Particles. Lecture Notes in Physics, vol. 725, p. 15. Springer, Berlin (2007)CrossRefGoogle Scholar
  3. 3.
    Kundu, M.R., Nindos, A., White, S.M., Grechnev, V.V.: A multiwavelength study of three solar flares. Astrophys. J. 557, 880–890 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. 580, L185–L188 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Martynova, O.V., Melnikov, V.F., Reznikova, V.E.: Proceedings of 11th Pulkovo International Conference on Solar Physics, pp. 241. Saint-Peterburg (2007)Google Scholar
  6. 6.
    Tzatzakis, V., Nindos, A., Alissandrakis, C.E., Shibasaki, K.: A statistical study of microwave flare morphologies. Solar Phys. 253, 79–94 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Melnikov, V.F.: Electron acceleration and transport in microwave flaring loops. In: Shibasaki, K. (ed.) Proceedings of the Nobeyama Symposium, Kiosato, 26–29 Oct 2004. NSRO Report, vol. 1, pp. 11–22 (2006)Google Scholar
  8. 8.
    Yokoyama, T., Nakajima, H., Shibasaki, K., Melnikov, V.F., Stepanov, A.V.: Microwave observations of the rapid propagation of nonthermal sources in a solar flare by the Nobeyama radioheliograph. Astrophys. J. 576, L87–L90 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Melnikov, V.F., Yokoyama, T., Shibasaki, K., Reznikova, V.E.: Spectral dynamics of mildly relativistic electrons in extended flaring loops. In: Wilson, A. (ed.) The 10th European Solar Physics Meeting, 9-14 Sept 2002, Prague, Czech Republic. ESA SP-506, vol. 1, pp. 339–342 (2002)Google Scholar
  10. 10.
    Fleishman, G.D., Gary, D.E., Nita, G.M.: Decimetric spike bursts versus microwave continuum. Astrophys. J. 593, 571–580 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Altyntsev, A.T., Fleishman, G.D., Huang, G.L., Melnikov, V.F.: A broadband microwave burst produced by electron beams. Astrophys. J. 677, 1367–1377 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Fleishman, G.D., Melnikov, V.F.: Gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 587, 823–835 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Bastian, T.S., Benz, A.O., Gary, D.E.: Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Lee, J.: Radio emissions from solar active regions. Space Sci. Rev. 133, 73–102 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    White, S.M., Benz, A.O., Christe, S., Farnik, F., Kundu, M.R., et al.: The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225–261 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Dulk, G.A.: Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    Melrose, D.B.: Collective plasma radiation process. Annu. Rev. Astron. Astrophys. 29, 31–57 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas. Astrophysics and Space Science Library, vol. 204. Kluwer, Dordrecht (1996). ISBN 0-7923-3907-XGoogle Scholar
  19. 19.
    Chernov, G., Fomichev, V., Tan, B., Yan, Y., Tan, C., Fu, Q.: Dynamics of flare processes and variety of the fine structure of solar radio emission over a wide frequency range of 30–7000 MHz. Solar Phys. 290, 95–114 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Razin, V.A.: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 584 (1960)Google Scholar
  21. 21.
    Korchak, A.A., Terletsky, Y.P.: Zh. Eks. Teor. Fiz. 22, 507 (1952)Google Scholar
  22. 22.
    Getmantsev, G.G.: Dokl. Akad. Nauk. SSSR 83, 557 (1952)Google Scholar
  23. 23.
    Korchak, A.A.: Electromagnetic radiation by cosmic-ray particles in the galaxy. Sov. Astron. 1, 360–365 (1957)ADSGoogle Scholar
  24. 24.
    Syrovatskii, S.I.: The distribution of relativistic electrons in the galaxy and the spectrum of synchrotron radio emission. Astronomicheskii Zhurnal 36, 17 (1959)ADSGoogle Scholar
  25. 25.
    Dulk, G.A., Marsh, K.A.: Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    Huang, G.L.: Diagnostics of the low-cutoff energy of nonthermal electrons in solar microwave and hard X-ray bursts. Solar Phys. 257, 323–334 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 158, 753–770 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    Razin, V.A.: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 921 (1960)Google Scholar
  29. 29.
    Korchak, A.A., Syrovatsky, S.I.: Astron. Zh. 38, 885 (1961)ADSGoogle Scholar
  30. 30.
    Takakura, T.: The self absorption of gyro-synchrotron emission in a magnetic dipole field: microwave impulsive burst and hard X-ray burst. Solar Phys. 26, 151–175 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    Eidman, V.Y.: Sov. Phys. -JETP 7, 91 (1958)Google Scholar
  32. 32.
    Eidman, V.Y.: Sov. Phys. -JETP 9, 947 (1959)MathSciNetGoogle Scholar
  33. 33.
    Twiss, R.Q.: Philos. Mag. 45, 249 (1954)CrossRefGoogle Scholar
  34. 34.
    Ramaty, R., Petrosian, V.: Free-free absorption of gyrosynchrotron radiation in solar microwave bursts. Astrophys. J. 178, 241–250 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J. 436, 941–949 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Tsytovich, V.N.: VestnikMosk. Gos. Univ. 4, 27 (1951)Google Scholar
  37. 37.
    Ginzburg, V.L.: Uspekhi Fiz. Nauk. 51, 343 (1953)CrossRefGoogle Scholar
  38. 38.
    Ter-Mikaelyan, M.L.: Dokl. Akad. Nauk. SSSR 94, 1033 (1954)Google Scholar
  39. 39.
    Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2002 august 24 limb flare loop: dynamics of microwave brightness distribution. Astrophys. J. 697, 735–746 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Morgachev, A.S., Kuznetsov, S.A., Melnikov, V.F.: Modeling the distribution of the circular polarization degree of microwave emission along flare loops in event on july 19, 2012. Geomagn. Aeron. 55, 1118–1123 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Alfven, N., Herlofson, N.: Phys. Rev. 78, 616 (1950)ADSCrossRefGoogle Scholar
  42. 42.
    Kiepenheuer, K.O.: Phys. Rev. 79, 738 (1950)ADSCrossRefGoogle Scholar
  43. 43.
    Trubnikov, B.A.: Dokl. Akad. Nauk. SSSR 118, 913 (1958)MathSciNetGoogle Scholar
  44. 44.
    Garibyan, G.M., Goldman, I.I.: Izv. Krymskoi Astrofiz. Obs. 7, 31 (1954)Google Scholar
  45. 45.
    Sokolov, A.A., Ternov, IMZh: Eksp. Teor. Fiz 31, 473 (1956)Google Scholar
  46. 46.
    Westfold, K.C.: The polarization of synchrotron radiation. Astrophys. J. 130, 241–258 (1959)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ginzburg, V.L., Syrovatsky, S.I.: The Origin of Cosmic Rays. Macmillan, New York (1964)CrossRefzbMATHGoogle Scholar
  48. 48.
    Petrosian, V.: Synchrotron emissivity from mildly relativistic particles. Astrophys. J. 251, 727–738 (1981)ADSCrossRefGoogle Scholar
  49. 49.
    Grebinskii, A.S., Sedov, A.P.: Microwave emission of solar flares. Sov. Astron. 26, 220–224 (1982)ADSGoogle Scholar
  50. 50.
    Robinson, P.A.: Gyrosynchrotron emission - generalizations of Petrosian’s method. Astrophys. J. 298, 161–169 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    Klein, K.-L.: Microwave radiation from a dense magneto-active plasma. Astron. Astrophys. 183, 341–350 (1987)ADSGoogle Scholar
  52. 52.
    Zhou, A.H., Ma, C.Y., Zhang, J., Wang, X.D., Zhang, H.Q.: Two sets of improved approximate expressions of the gyrosynchrotron radiation. Solar Phys. 177, 427–437 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    Zhou, A.H., Huang, G.L., Wang, X.D.: Approximate expressions for gyrosynchrotron radiation in transverse propagation. Solar Phys. 189, 345–356 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    Hildebrandt, J., Kruger, A.: Kleinheubacher Berichte 39, 717 (1996)Google Scholar
  55. 55.
    Belkora, L.: Time evolution of solar microwave bursts. Astrophys. J. 481, 532–544 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    Melnikov, V.F.: Electron acceleration and capture in impulsive and gradual bursts: results of analysis of microwave and hard X-ray emissions. Radiophys. Quantum Electron. 37, 557–568 (1994)ADSCrossRefGoogle Scholar
  57. 57.
    Melnikov, V.F., Magun, A.: Spectral flattening during solar radio bursts at cm-mm-wavelengths and the dynamics of energetic electrons in a flare loop. Solar Phys. 178, 591–609 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    Melnikov, V.F., Silva, A.V.R.: Temporal evolution of solar flare microwave and hard X-ray spectra: evidence for electron spectral dynamics-II. In: Ramaty, R, Mandzhavidze, N (eds.) High Energy Solar Physics Workshop — Anticipating Hessi, ASP Conference Series, vol. 206, pp. 475–477 (2000)Google Scholar
  59. 59.
    Lee, J., Gary, D.E.: Solar microwave bursts and injection pitch-angle distribution of flare electrons. Astrophys. J. 543, 457–471 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    Melnikov, V.F., Shibasaki, K., Nakajima, H., Yokoyama, T., Reznikova, V.E.: Loop-top nonthermal microwave source in extended flaring loops: evidence from 17 GHz and 34 GHz NoRH observations. Abstracts of the CESRA workshop on Energy Conversion and Particle Acceleration in the Solar Corona. In: CESRA Workshop, Zurich: ETH, 17 (2001)Google Scholar
  61. 61.
    Aschwanden, M.J., Benz, A.O., Schwartz, R.A., Lin, R., Pelling, R.M., Stehling, W.: Flare fragmentation and type III productivity in the 1980 June 27 flare. Sol. Phys. 130, 39–55 (1990)ADSCrossRefGoogle Scholar
  62. 62.
    McTiernan, J.M., Petrosian, V.: Center-to-limb variations of characteristics of solar flare hard X-ray and gamma-ray emission. Astrophys. J. 379, 381–391 (1991)ADSCrossRefGoogle Scholar
  63. 63.
    Silva, A.V.R., Valente, M.M.: Center-to-limb variation of solar microwave bursts. Sol. Phys. 206, 177–188 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    Miller, J.A., Cargill, P.J., Emsly, A.G., et al.: Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 14631–14660 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    Pryadko, J.M., Petrosian, V.: Stochastic acceleration of electrons by plasma waves. III. Waves propagating perpendicular to the magnetic field. Astrophys. J. 515, 873–881 (1999)ADSCrossRefGoogle Scholar
  66. 66.
    Lee, J., Gary, D.E., Shibasaki, K.: Magnetic trapping and electron injection in two contrasting solar microwave bursts. Astrophys. J. 531, 1109–1120 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    Fleishman, G.D., Melnikov, V.F.: Optically thick gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 584, 1071–1083 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Hewitt, R.G., Melrose, D.B., R\(\ddot{o}\)nnmark, K.G.: The loss-cone driven electron-cyclotron maser. Aust. J. Phys. 35, 447–471 (1982)Google Scholar
  69. 69.
    Gary, D.E., Bastian, T.S., White, S.M., Hurford, G.J.: The Frequency-Agile Solar Radiotelescope (FASR) (invited). Asia-Pacific Radio Science Conference AP-RASC ’01, Proceedings of a conference held 1–4 Aug, 2001 at Chuo University, Tokyo, Japan. Sponsored by Japan National Committee of URSI and the Institute of Electronics, Information and Communication Engineers. Co-sponsored by International Union of Radio Science, 236 (2001)Google Scholar
  70. 70.
    Hamilton, R.J., Lu, E.T., Petrosian, V.: Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma. Astrophys. J. 354, 726–734 (1990)ADSCrossRefGoogle Scholar
  71. 71.
    Gorbikov, G.D., Melnikov, V.F.: The numerical solution of the Fokker–Plank equation for modeling of particle distribution in solar magnetic traps. Math. Model. 19, 112–122 (2007)zbMATHGoogle Scholar
  72. 72.
    Melnikov, V.F., Gorbikov, S.P., Pyatakov, N.P.: Formation of anisotropic distributions of mildly relativistic electrons in flaring loops. In: Universal Heliophysical Processes, Proceedings of the International Astronomical Union, IAU Symposium vol. 257, pp. 323–328 (2009)Google Scholar
  73. 73.
    Benka, S.G., Holman, G.D.: A thermal/nonthermal model for solar microwave bursts. Astrophys. J. 391, 854–864 (1992)ADSCrossRefGoogle Scholar
  74. 74.
    Song, Q., Nakajima, H., Huang, G., Tan, B., Huang, Y., Wu, Z.: Turnover frequency in solar microwave bursts with an extremely flat optically-thin spectrum. Solar Phys. 291, 3619–3635 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    Fleishman, G.D., Kuznetsov, A.A.: Fast gyrosynchrotron codes. Astrophys. J. Lett. 721, 1127–1141 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    Fleishman, G.D., Nita, G.M., Gary, D.E.: Dynamic magnetography of solar flaring loops. Astrophys. J. Lett. 698, L183–L187 (2009)ADSCrossRefGoogle Scholar
  77. 77.
    Morgachev, A.S., Kuznetsov, S.A., Melnikov, V.F.: Radio diagnostics of the solar flaring loop parameters by the forward fitting method. Geomagn. Aeron. 54, 933–942 (2014)ADSCrossRefGoogle Scholar
  78. 78.
    Nita, G.M., Fleishman, G.D., Kuznetsov, A.A., Kontar, E.P., Gary, D.E.: Three-dimensional radio and X-ray modeling and data analysis software: revealing flare complexity. Astrophys. J. 799, id236 (15pp) (2015)Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guangli Huang
    • 1
    Email author
  • Victor F. Melnikov
    • 2
  • Haisheng Ji
    • 1
  • Zongjun Ning
    • 1
  1. 1.Purple Mountain ObservatoryNanjingChina
  2. 2.Pulkovo ObservatoryRussian Academy of SciencesSaint-PetersburgRussia

Personalised recommendations