Skip to main content

Theory of MW Emissions of Solar Flaring Loops

  • Chapter
  • First Online:
Solar Flare Loops: Observations and Interpretations
  • 625 Accesses

Abstract

It is well known that there are various acceleration mechanisms in solar flares (see review papers Aschwanden, Space Sci Rev 101:1–227, 2002, [1], Vlahos, The high energy solar corona: waves, eruptions, particles, Springer, Berlin, p 15, 2007, [2]), including DC electric field (in current sheets or twisted magnetic loops), stochastic acceleration (in plasma wave turbulence and microflares), shock acceleration (in MHD shocks and standing shocks), and electron induced acceleration (in collapsed magnetic trapping). Different mechanisms make accelerated electrons inject into different parts of flaring loops, such as nearby one loop top (LT) by the acceleration in a perpendicular current sheet (called as standard model), and also possibly in a region with strong turbulence, or nearby one foot-point (FP) of a big magnetic loop in a double loop system, or in total twisted magnetic loop with a great amount of microcurrent sheets. Moreover, different mechanisms produce different pitch-angle distributions (isotropic and parallel or perpendicular anisotropic ones).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aschwanden, M.J.: Particle acceleration and kinematics in solar flares - a synthesis of recent observations and theoretical concepts (invited review). Space Sci. Rev. 101, 1–227 (2002)

    Article  ADS  Google Scholar 

  2. Vlahos, L.: Magnetic complexity, fragmentation, particle acceleration and radio emission from the sun. The High Energy Solar Corona: Waves, Eruptions, Particles. Lecture Notes in Physics, vol. 725, p. 15. Springer, Berlin (2007)

    Chapter  Google Scholar 

  3. Kundu, M.R., Nindos, A., White, S.M., Grechnev, V.V.: A multiwavelength study of three solar flares. Astrophys. J. 557, 880–890 (2001)

    Article  ADS  Google Scholar 

  4. Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. 580, L185–L188 (2002)

    Article  ADS  Google Scholar 

  5. Martynova, O.V., Melnikov, V.F., Reznikova, V.E.: Proceedings of 11th Pulkovo International Conference on Solar Physics, pp. 241. Saint-Peterburg (2007)

    Google Scholar 

  6. Tzatzakis, V., Nindos, A., Alissandrakis, C.E., Shibasaki, K.: A statistical study of microwave flare morphologies. Solar Phys. 253, 79–94 (2008)

    Article  ADS  Google Scholar 

  7. Melnikov, V.F.: Electron acceleration and transport in microwave flaring loops. In: Shibasaki, K. (ed.) Proceedings of the Nobeyama Symposium, Kiosato, 26–29 Oct 2004. NSRO Report, vol. 1, pp. 11–22 (2006)

    Google Scholar 

  8. Yokoyama, T., Nakajima, H., Shibasaki, K., Melnikov, V.F., Stepanov, A.V.: Microwave observations of the rapid propagation of nonthermal sources in a solar flare by the Nobeyama radioheliograph. Astrophys. J. 576, L87–L90 (2002)

    Article  ADS  Google Scholar 

  9. Melnikov, V.F., Yokoyama, T., Shibasaki, K., Reznikova, V.E.: Spectral dynamics of mildly relativistic electrons in extended flaring loops. In: Wilson, A. (ed.) The 10th European Solar Physics Meeting, 9-14 Sept 2002, Prague, Czech Republic. ESA SP-506, vol. 1, pp. 339–342 (2002)

    Google Scholar 

  10. Fleishman, G.D., Gary, D.E., Nita, G.M.: Decimetric spike bursts versus microwave continuum. Astrophys. J. 593, 571–580 (2003)

    Article  ADS  Google Scholar 

  11. Altyntsev, A.T., Fleishman, G.D., Huang, G.L., Melnikov, V.F.: A broadband microwave burst produced by electron beams. Astrophys. J. 677, 1367–1377 (2008)

    Article  ADS  Google Scholar 

  12. Fleishman, G.D., Melnikov, V.F.: Gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 587, 823–835 (2003)

    Article  ADS  Google Scholar 

  13. Bastian, T.S., Benz, A.O., Gary, D.E.: Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998)

    Article  ADS  Google Scholar 

  14. Lee, J.: Radio emissions from solar active regions. Space Sci. Rev. 133, 73–102 (2007)

    Article  ADS  Google Scholar 

  15. White, S.M., Benz, A.O., Christe, S., Farnik, F., Kundu, M.R., et al.: The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225–261 (2011)

    Article  ADS  Google Scholar 

  16. Dulk, G.A.: Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985)

    Article  ADS  Google Scholar 

  17. Melrose, D.B.: Collective plasma radiation process. Annu. Rev. Astron. Astrophys. 29, 31–57 (1991)

    Article  ADS  Google Scholar 

  18. Zheleznyakov, V.V.: Radiation in Astrophysical Plasmas. Astrophysics and Space Science Library, vol. 204. Kluwer, Dordrecht (1996). ISBN 0-7923-3907-X

    Google Scholar 

  19. Chernov, G., Fomichev, V., Tan, B., Yan, Y., Tan, C., Fu, Q.: Dynamics of flare processes and variety of the fine structure of solar radio emission over a wide frequency range of 30–7000 MHz. Solar Phys. 290, 95–114 (2015)

    Article  ADS  Google Scholar 

  20. Razin, V.A.: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 584 (1960)

    Google Scholar 

  21. Korchak, A.A., Terletsky, Y.P.: Zh. Eks. Teor. Fiz. 22, 507 (1952)

    Google Scholar 

  22. Getmantsev, G.G.: Dokl. Akad. Nauk. SSSR 83, 557 (1952)

    Google Scholar 

  23. Korchak, A.A.: Electromagnetic radiation by cosmic-ray particles in the galaxy. Sov. Astron. 1, 360–365 (1957)

    ADS  Google Scholar 

  24. Syrovatskii, S.I.: The distribution of relativistic electrons in the galaxy and the spectrum of synchrotron radio emission. Astronomicheskii Zhurnal 36, 17 (1959)

    ADS  Google Scholar 

  25. Dulk, G.A., Marsh, K.A.: Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982)

    Article  ADS  Google Scholar 

  26. Huang, G.L.: Diagnostics of the low-cutoff energy of nonthermal electrons in solar microwave and hard X-ray bursts. Solar Phys. 257, 323–334 (2009)

    Article  ADS  Google Scholar 

  27. Ramaty, R.: Gyrosynchrotron emission and absorption in a magnetoactive plasma. Astrophys. J. 158, 753–770 (1969)

    Article  ADS  Google Scholar 

  28. Razin, V.A.: Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 921 (1960)

    Google Scholar 

  29. Korchak, A.A., Syrovatsky, S.I.: Astron. Zh. 38, 885 (1961)

    ADS  Google Scholar 

  30. Takakura, T.: The self absorption of gyro-synchrotron emission in a magnetic dipole field: microwave impulsive burst and hard X-ray burst. Solar Phys. 26, 151–175 (1972)

    Article  ADS  Google Scholar 

  31. Eidman, V.Y.: Sov. Phys. -JETP 7, 91 (1958)

    Google Scholar 

  32. Eidman, V.Y.: Sov. Phys. -JETP 9, 947 (1959)

    MathSciNet  Google Scholar 

  33. Twiss, R.Q.: Philos. Mag. 45, 249 (1954)

    Article  Google Scholar 

  34. Ramaty, R., Petrosian, V.: Free-free absorption of gyrosynchrotron radiation in solar microwave bursts. Astrophys. J. 178, 241–250 (1972)

    Article  ADS  Google Scholar 

  35. Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J. 436, 941–949 (1994)

    Article  ADS  Google Scholar 

  36. Tsytovich, V.N.: VestnikMosk. Gos. Univ. 4, 27 (1951)

    Google Scholar 

  37. Ginzburg, V.L.: Uspekhi Fiz. Nauk. 51, 343 (1953)

    Article  Google Scholar 

  38. Ter-Mikaelyan, M.L.: Dokl. Akad. Nauk. SSSR 94, 1033 (1954)

    Google Scholar 

  39. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2002 august 24 limb flare loop: dynamics of microwave brightness distribution. Astrophys. J. 697, 735–746 (2009)

    Article  ADS  Google Scholar 

  40. Morgachev, A.S., Kuznetsov, S.A., Melnikov, V.F.: Modeling the distribution of the circular polarization degree of microwave emission along flare loops in event on july 19, 2012. Geomagn. Aeron. 55, 1118–1123 (2015)

    Article  ADS  Google Scholar 

  41. Alfven, N., Herlofson, N.: Phys. Rev. 78, 616 (1950)

    Article  ADS  Google Scholar 

  42. Kiepenheuer, K.O.: Phys. Rev. 79, 738 (1950)

    Article  ADS  Google Scholar 

  43. Trubnikov, B.A.: Dokl. Akad. Nauk. SSSR 118, 913 (1958)

    MathSciNet  Google Scholar 

  44. Garibyan, G.M., Goldman, I.I.: Izv. Krymskoi Astrofiz. Obs. 7, 31 (1954)

    Google Scholar 

  45. Sokolov, A.A., Ternov, IMZh: Eksp. Teor. Fiz 31, 473 (1956)

    Google Scholar 

  46. Westfold, K.C.: The polarization of synchrotron radiation. Astrophys. J. 130, 241–258 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ginzburg, V.L., Syrovatsky, S.I.: The Origin of Cosmic Rays. Macmillan, New York (1964)

    Book  MATH  Google Scholar 

  48. Petrosian, V.: Synchrotron emissivity from mildly relativistic particles. Astrophys. J. 251, 727–738 (1981)

    Article  ADS  Google Scholar 

  49. Grebinskii, A.S., Sedov, A.P.: Microwave emission of solar flares. Sov. Astron. 26, 220–224 (1982)

    ADS  Google Scholar 

  50. Robinson, P.A.: Gyrosynchrotron emission - generalizations of Petrosian’s method. Astrophys. J. 298, 161–169 (1985)

    Article  ADS  Google Scholar 

  51. Klein, K.-L.: Microwave radiation from a dense magneto-active plasma. Astron. Astrophys. 183, 341–350 (1987)

    ADS  Google Scholar 

  52. Zhou, A.H., Ma, C.Y., Zhang, J., Wang, X.D., Zhang, H.Q.: Two sets of improved approximate expressions of the gyrosynchrotron radiation. Solar Phys. 177, 427–437 (1998)

    Article  ADS  Google Scholar 

  53. Zhou, A.H., Huang, G.L., Wang, X.D.: Approximate expressions for gyrosynchrotron radiation in transverse propagation. Solar Phys. 189, 345–356 (1999)

    Article  ADS  Google Scholar 

  54. Hildebrandt, J., Kruger, A.: Kleinheubacher Berichte 39, 717 (1996)

    Google Scholar 

  55. Belkora, L.: Time evolution of solar microwave bursts. Astrophys. J. 481, 532–544 (1997)

    Article  ADS  Google Scholar 

  56. Melnikov, V.F.: Electron acceleration and capture in impulsive and gradual bursts: results of analysis of microwave and hard X-ray emissions. Radiophys. Quantum Electron. 37, 557–568 (1994)

    Article  ADS  Google Scholar 

  57. Melnikov, V.F., Magun, A.: Spectral flattening during solar radio bursts at cm-mm-wavelengths and the dynamics of energetic electrons in a flare loop. Solar Phys. 178, 591–609 (1998)

    Article  ADS  Google Scholar 

  58. Melnikov, V.F., Silva, A.V.R.: Temporal evolution of solar flare microwave and hard X-ray spectra: evidence for electron spectral dynamics-II. In: Ramaty, R, Mandzhavidze, N (eds.) High Energy Solar Physics Workshop — Anticipating Hessi, ASP Conference Series, vol. 206, pp. 475–477 (2000)

    Google Scholar 

  59. Lee, J., Gary, D.E.: Solar microwave bursts and injection pitch-angle distribution of flare electrons. Astrophys. J. 543, 457–471 (2000)

    Article  ADS  Google Scholar 

  60. Melnikov, V.F., Shibasaki, K., Nakajima, H., Yokoyama, T., Reznikova, V.E.: Loop-top nonthermal microwave source in extended flaring loops: evidence from 17 GHz and 34 GHz NoRH observations. Abstracts of the CESRA workshop on Energy Conversion and Particle Acceleration in the Solar Corona. In: CESRA Workshop, Zurich: ETH, 17 (2001)

    Google Scholar 

  61. Aschwanden, M.J., Benz, A.O., Schwartz, R.A., Lin, R., Pelling, R.M., Stehling, W.: Flare fragmentation and type III productivity in the 1980 June 27 flare. Sol. Phys. 130, 39–55 (1990)

    Article  ADS  Google Scholar 

  62. McTiernan, J.M., Petrosian, V.: Center-to-limb variations of characteristics of solar flare hard X-ray and gamma-ray emission. Astrophys. J. 379, 381–391 (1991)

    Article  ADS  Google Scholar 

  63. Silva, A.V.R., Valente, M.M.: Center-to-limb variation of solar microwave bursts. Sol. Phys. 206, 177–188 (2002)

    Article  ADS  Google Scholar 

  64. Miller, J.A., Cargill, P.J., Emsly, A.G., et al.: Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 14631–14660 (1997)

    Article  ADS  Google Scholar 

  65. Pryadko, J.M., Petrosian, V.: Stochastic acceleration of electrons by plasma waves. III. Waves propagating perpendicular to the magnetic field. Astrophys. J. 515, 873–881 (1999)

    Article  ADS  Google Scholar 

  66. Lee, J., Gary, D.E., Shibasaki, K.: Magnetic trapping and electron injection in two contrasting solar microwave bursts. Astrophys. J. 531, 1109–1120 (2000)

    Article  ADS  Google Scholar 

  67. Fleishman, G.D., Melnikov, V.F.: Optically thick gyrosynchrotron emission from anisotropic electron distributions. Astrophys. J. 584, 1071–1083 (2003)

    Article  ADS  Google Scholar 

  68. Hewitt, R.G., Melrose, D.B., R\(\ddot{o}\)nnmark, K.G.: The loss-cone driven electron-cyclotron maser. Aust. J. Phys. 35, 447–471 (1982)

    Google Scholar 

  69. Gary, D.E., Bastian, T.S., White, S.M., Hurford, G.J.: The Frequency-Agile Solar Radiotelescope (FASR) (invited). Asia-Pacific Radio Science Conference AP-RASC ’01, Proceedings of a conference held 1–4 Aug, 2001 at Chuo University, Tokyo, Japan. Sponsored by Japan National Committee of URSI and the Institute of Electronics, Information and Communication Engineers. Co-sponsored by International Union of Radio Science, 236 (2001)

    Google Scholar 

  70. Hamilton, R.J., Lu, E.T., Petrosian, V.: Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma. Astrophys. J. 354, 726–734 (1990)

    Article  ADS  Google Scholar 

  71. Gorbikov, G.D., Melnikov, V.F.: The numerical solution of the Fokker–Plank equation for modeling of particle distribution in solar magnetic traps. Math. Model. 19, 112–122 (2007)

    MATH  Google Scholar 

  72. Melnikov, V.F., Gorbikov, S.P., Pyatakov, N.P.: Formation of anisotropic distributions of mildly relativistic electrons in flaring loops. In: Universal Heliophysical Processes, Proceedings of the International Astronomical Union, IAU Symposium vol. 257, pp. 323–328 (2009)

    Google Scholar 

  73. Benka, S.G., Holman, G.D.: A thermal/nonthermal model for solar microwave bursts. Astrophys. J. 391, 854–864 (1992)

    Article  ADS  Google Scholar 

  74. Song, Q., Nakajima, H., Huang, G., Tan, B., Huang, Y., Wu, Z.: Turnover frequency in solar microwave bursts with an extremely flat optically-thin spectrum. Solar Phys. 291, 3619–3635 (2016)

    Article  ADS  Google Scholar 

  75. Fleishman, G.D., Kuznetsov, A.A.: Fast gyrosynchrotron codes. Astrophys. J. Lett. 721, 1127–1141 (2010)

    Article  ADS  Google Scholar 

  76. Fleishman, G.D., Nita, G.M., Gary, D.E.: Dynamic magnetography of solar flaring loops. Astrophys. J. Lett. 698, L183–L187 (2009)

    Article  ADS  Google Scholar 

  77. Morgachev, A.S., Kuznetsov, S.A., Melnikov, V.F.: Radio diagnostics of the solar flaring loop parameters by the forward fitting method. Geomagn. Aeron. 54, 933–942 (2014)

    Article  ADS  Google Scholar 

  78. Nita, G.M., Fleishman, G.D., Kuznetsov, A.A., Kontar, E.P., Gary, D.E.: Three-dimensional radio and X-ray modeling and data analysis software: revealing flare complexity. Astrophys. J. 799, id236 (15pp) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangli Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, G., Melnikov, V.F., Ji, H., Ning, Z. (2018). Theory of MW Emissions of Solar Flaring Loops. In: Solar Flare Loops: Observations and Interpretations. Springer, Singapore. https://doi.org/10.1007/978-981-10-2869-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2869-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2868-7

  • Online ISBN: 978-981-10-2869-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics