Skip to main content

Metabolic Responses of Pesticides in Plants and Their Ameliorative Processes

  • Chapter
  • First Online:

Abstract

The major challenge faced by modern agriculture today is to overcome the impending serious food shortage considering the rising population even while battling to maintain crop yields under unfavourable environmental conditions. Pesticides are important chemicals recurrently applied for enhancing crop yields in agriculture and also for amelioration of vector-borne diseases. Rampant use of these chemicals has led to serious health implications to man and his environment. In developing nations (like India), 76 % of the total pesticide used is harmful insecticide as against just 44 % in the developed countries. This difference in the pesticide usage pattern evidently affects the total cost–benefit ratio between these nations. It is commonly believed by the general public that ‘if little is good, a lot more will be better’. This unchecked and unwise use of pesticides leads to deposition of 95 % of pesticides in soil, water and atmosphere as well as in nontarget organisms. Consequently, pesticide residues have been found in raw as well as processed fruits and vegetables. Pesticides not only kill insects and weeds but also are toxic to a variety of other nontarget organisms like birds, fish, beneficial insects and plants. Soil microflora has also been adversely affected by treatment of soil with pesticides.

Xenobiotics, such as pesticides, trigger a defence response in plants. The mechanism by which pesticide is perceived and the signalling is transmitted within plant cells still remains elusive. Various xenobiotics induce oxidative stress and often activate cell signalling pathways, leading to production of stress proteins and upregulation of antioxidants. These changes include the evolution of new metabolic pathways, generation/accumulation of low molecular weight metabolites, synthesis of special proteins, detoxification mechanisms and reduction/elevation in phytohormone levels. Comparison of metabolic pathways, detoxification mechanisms and variance in tolerance level of different plants to pesticides can aid us in designing efficient and cheap vegetative treatment systems for decontaminating soil and water containing pesticide residues. Thus, understanding metabolism of pesticides in plants is necessary for developing strategies for amelioration of their harmful effects in nontarget organisms and also for remediation of contaminated soil, water and atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdollahi M, Mostafalou S, Pournourmohammadi S, Shadnia S (2004) Oxidative stress and cholinesterase inhibition in saliva and plasma of rats following subchronic exposure to malathion. Comp Biochem Physiol C Toxicol Pharmacol 137:29–34

    Article  PubMed  CAS  Google Scholar 

  • Agency for Toxic Substances and Registry (ATSDR) (1997) Toxicological profile for chlorpyrifos. Available from http://www.atsdr.cdc.gov/toxprofiles/tp84.pdf

  • Ahemad M, Khan MS (2010) Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pestic Biochem Physiol 98:183–190

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS, Zaidi A, Wani PA (2009) Remediation of herbicides contaminated soil using microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova Publishers, New York, pp 261–284

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12–03. FAO, Rome

    Google Scholar 

  • Almagro L, Ros LVG, Belchi-Navarro S, Bru R, Barceló AR, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Altuntas I, KÂlÂnç I, Orhan H, Demirel R, Koylu H, Delibas N (2004) The effects of diazinon on lipid peroxidation and antioxidant enzymes in erythrocytes in vitro. Hum Exp Toxicol 23:9–13

    Article  CAS  PubMed  Google Scholar 

  • Ambali SF, Abubakar AT, Shittu M, Yaquub LS, Kobo PI, Giwa A (2010) Ameliorative effects of zinc on chlorpyrifos-induced erythrocyte fragility in Wistar rats. N Y Sci J 3:117–122

    Google Scholar 

  • Ambali SF, Akanbi D, Igbokwe N, Shittu M, Kawu M, Ayo J (2007) Evaluation of subchronic chlorpyrifos poisoning on haematological and serum biochemical changes in mice and protective effect of vitamin C. J Toxicol Sci 32:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ananievaa EA, Christova KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J Plant Physiol 161(3):319–328

    Article  Google Scholar 

  • Anderson MP, Gronwald JW (1991) Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhanced glutathione-S-transferase activity. Plant Physiol 96:104–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni O, Dipierro S, Borraccino G (1981) Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Lett 125:242–245

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert S, Schwitzguébel JP (2004) Screening of plant species for the phytotreatment of wastewater containing sulphonated anthraquinones. Water Res 38:3569–3575

    Article  CAS  PubMed  Google Scholar 

  • Ayansina ADV (2009) Pesticide use in agriculture and microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes in sustainable agriculture. Nova, New York, pp 261–284

    Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione synthesis and stress defence gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banas´ A, Johansson I, Stenlid G, Stymne S (1993) Free radical scavengers and inhibitors of lipoxygenases as antagonists the herbicides haloxyfop and alloxydim. Swed J Agric Res 23:67

    Google Scholar 

  • Banas´ A, Johansson I, Stenlid G, Stymne S (2000) Selective increase in acyl hydrolase activity by graminicides in wheat. Biochem Soc Trans 28:777

    Article  PubMed  Google Scholar 

  • Baruah M, Mishra RR (1986) Effect of herbicides, butachlor, 2,4-D and oxyfluorfen on enzyme activities and CO2 evolution in submerged paddy field soil. Plant Soil 96:287–291

    Article  CAS  Google Scholar 

  • Behrendt H, Brüggemann R (1993) Modeling the fate of organic-chemicals in the soil–plant environment—model study of root uptake of pesticides. Chemosphere 27:2325–2332

    Article  CAS  Google Scholar 

  • Belbachir O, Matringe M, Tissut M, Chevallier D (1980) Physiological actions of dinoterb, a phenol derivative: 1. Physiological effects on the whole plant and on tissue fragments of pea. Pestic Biochem Physiol 14:303–308

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999a) Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208:337–344

    Article  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999b) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide Biol Chem 3:199–208

    Article  CAS  Google Scholar 

  • Boersma L, Lindstrom FT, McFarlane C, McCoy EL (1988) Uptake of organic chemicals by plants: a theoretical study. Soil Sci 146:403–417

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH (1983) Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots. Pestic Sci 14:492–500

    Article  CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504

    Article  CAS  Google Scholar 

  • Campanella B, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs—potential and limitations. Environ Sci Pollut Res 9:73–85

    Article  CAS  Google Scholar 

  • Campanella B, Paul R (2000) Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.) of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int J Phytorem 2:145–158

    Article  CAS  Google Scholar 

  • Casida JE, Lykken L (1969) Metabolism of organic pesticide chemicals in higher plants. Annu Rev Plant Physiol 20:607–636

    Article  CAS  Google Scholar 

  • Casida JE, Quistad GB (2004) Organophosphate toxicology: safety aspects of on acetylcholinesterase secondary targets. Chem Res Toxicol 17:983–998

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010a) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T et al (2010b) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocker KM, Northcroft DS, Coleman JOD, Moss SR (2001) Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Manag Sci 57:587–597

    Article  CAS  PubMed  Google Scholar 

  • Colborn T, Dumanoski D, Myers JP (1996a) Our stolen future. Dutton, Toronto

    Google Scholar 

  • Colborn T, Dumanoski D, Myers JP (1996b) Our stolen future: are we threatening our fertility, intelligence, and survival? A scientific detective story. New York: Dutton, p 306, ISBN 0-452-27414-1

  • Cole DJ (1985) Mode of action of glyphosate—a literature analysis. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, pp 48–74

    Google Scholar 

  • Cole DJ, Edwards R (2000) Secondary metabolism of agrochemicals in plants. In: Robert TR (ed) Agrochemicals and plant protection. Wiley, Chichester, pp p107–p154

    Google Scholar 

  • Coleman JOD, Randall RA, Blake-Kalff MMA (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. TIPS 2:144–151

    Google Scholar 

  • Cosio C, Durand CH (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Zhang R, Wu GL, Zhu HM, Yang H (2010) Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Arch Environ Contam Toxicol 59:100–108

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292

    Article  CAS  PubMed  Google Scholar 

  • Dandapani M, Zachariah A, Kavitha MR, Jeyaseelan L, Oommen A (2003) Oxidative damage in intermediate syndrome of acute organophosphorus poisoning. Ind J Med Res 117:253–259

    CAS  Google Scholar 

  • Dayan FE, Duke SO, Grossmann K (2010) Herbicides as probes in plant biology. Weed Sci 58:340–350

    Article  CAS  Google Scholar 

  • Dayan FE, Watson SB (2011) Plant cell membrane as a marker for light-dependent and light-independent herbicide mechanisms of action. Pestic Biochem Physiol 101:182–190

    Article  CAS  Google Scholar 

  • de Oliveira TA, Ronchi-Teles B, da Fonseca CRV, da Silva SLR, Santos PA, Nunez CV (2012) Insecticidal activity of Vitex cymosa (Lamiaceae) and Eschweilera pedicellata (Lecythidaceae) extracts against Sitophilus zeamais adults (Curculionidae). Emir J Food Agric 24:49–56

    Article  Google Scholar 

  • DeRidder BP, Dixon DP, Beussman DJ, Edwards R, Goldsbrough PB (2002) Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol 130(3):1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillion PS, Byrnes WR, Merritt C (1968) Simazine distribution and degradation in red pine seedlings. Weed Sci 16:374–376

    Google Scholar 

  • Dietz KJ (2003) Redox control, redox signaling, and redox homeostasis in plant cells. Int Rev Cytol 228:141–193

    Article  CAS  PubMed  Google Scholar 

  • Ding CK, Wang CY, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2005) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  CAS  Google Scholar 

  • Eberbach PL, Douglas LA (1991) Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C2H2/C2H4) of Trifolium subterraneum. Plant Soil 131:67–76

    Article  CAS  Google Scholar 

  • Elbaz A, Wei YY, Meng Q, Zheng Q, Yang ZM (2010) Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Ellis JP, Camper ND (1995) In vitro cultured cocklebur (Xanthium strumarium L.) responses to dimercaptopropanesulfonic acid and monosodium methanearsonate. J Plant Growth Reg 14:9–13

    Article  CAS  Google Scholar 

  • Ezra G, Stephenson GR (1985) Comparative metabolism of atrazine and EPTC in proso millet (Panicum miliaceum L.) and corn. Pestic Biochem Physiol 24:207–212

    Article  CAS  Google Scholar 

  • Feierabend J, Winkelhüsener T (1982) Nature of photooxidative events in leaves treated with chlorosis-inducing herbicides. Plant Physiol 70(5):1277–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LC, Cataneo AC, Remaeh LMR, Corniani N, Fumis TF, de Souza YA, Scavroni J, Soares BJA (2010) Nitric oxide reduces oxidative stress generated by lactofen in soybean plants. Pestic Biochem Physiol 97:47–54

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signalling: a metabolic link between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005b) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer C, Noctor G (2001) The molecular biology and metabolism of glutathione. In: Grill D, Tausz M, De Кoк L (eds) Significance of glutathione in plant adaptation to the environment, vol 2, Handbook series of plant ecophysiology. Kluwer, Dordrecht, pp 27–56

    Chapter  Google Scholar 

  • Franco R, Sanchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res 674:3–22

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact 188:289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman B (1995) Environmental ecology. Academic, New York

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst EP, Norman MA (1991) Interactions of herbicides with photosynthetic electron transport. Weed Sci 39(3):458–464

    CAS  Google Scholar 

  • Fufezan C, Rutherford AW, Krieger-Liszkay A (2002) Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:407–410

    Article  CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN (2014) Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Ahmad P (ed) Emerging technologies and management of crop stress tolerance, 2. Elsevier Academic Press, San Diego, pp 215–248

    Chapter  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Effect of oxyfluorfen and diurnal one and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic Biochem Physiol 72:178–185

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Anjum NK, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. In: Anjum NA, Lopez-Lauri F (ed) Plant nutrition and abiotic stress tolerance III. Plant Stress 5(1):1–23

    Google Scholar 

  • Giridhar P, Indira P (1997) Effects of an organophosphorous Nuvan on total lipids and lipase activity of the fresh water fish Labeo rohita (Hamilton). Ind J Comp Anim Physiol 15:37–40

    Google Scholar 

  • Gomez LD, Vanacker H, Buchner P, Noctor G, Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134:1662–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gondim FA, Gomes-Filho E, Costa JH, Mendes Alencar NL, Prisco JT (2012) Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiol Biochem 56:62–71

    Article  CAS  PubMed  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Gonzalez-Barreiro C, Simal-Gándara J (2011) A review on the fate of pesticides during the processes within the food-production chain. Crit Rev Food Sci Nutr 51:99–114

    Article  PubMed  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2008) Occurrence of fungicide and insecticide residues in trade samples of leafy vegetables. Food Chem 107:1342–1347

    Article  CAS  Google Scholar 

  • Grover R, Cessna AJ (eds) (1991) Environmental chemistry of herbicides. CRC Press, Boca Raton

    Google Scholar 

  • Grzam A, Martin MN, Hell R, Meyer AJ (2007) c-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione-S-conjugates in Arabidopsis. FEBS Lett 581:3131–3138

    Article  CAS  PubMed  Google Scholar 

  • Guo YP, Zhou HF, Zhang LC (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260–267

    Article  CAS  Google Scholar 

  • Gupta RC (2004) Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 14:103–143

    Article  CAS  PubMed  Google Scholar 

  • Hall JC, Hoagland RE, Zoblotowicz RM (eds) (2001) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, p 432

    Google Scholar 

  • Hatton PJ, Cummins I, Cole DJ, Edwards R (1999) Glutathione transferases involved in herbicide detoxification in the leaves of Setaria faberi (giant foxtail). Physiol Plant 105:9–16

    Article  CAS  Google Scholar 

  • Hatzios KK (1991) Bio-transformations of herbicides in higher plants. In: Grover R, Cessna AJ (eds) Environmental chemistry of herbicides. CRC Press, Boca Raton, pp 141–185

    Google Scholar 

  • Hatzios KK (2001) Functions and regulations of glutathione S-transferases. In: Hall JC, Hoagland RE, Zoblotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 218–239

    Chapter  Google Scholar 

  • Hayes JD, Wolf CR (1988) Role of glutathione transferase in drug resistance. In: Sies H, Ketterer B (eds) Glutathione conjugation: mechanisms and biological significance. Academic, London, pp 316–356

    Google Scholar 

  • Hess FD (2000) Light-dependent herbicides: an overview. Weed Sci 48:160–170

    Article  CAS  Google Scholar 

  • Hoagland RE, Zablotowicz RM (2001) The role of plant and microbial hydrolytic enzymes in pesticide metabolism. In: Hall JC, Hoagland RE, Zoblotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 58–88

    Chapter  Google Scholar 

  • Hopf FR, Whitten DG (1978) Porphyrins and metalloporphyrins. In: Dolphin D (ed) The porphyrins. Academic, New York, pp p161–p195

    Chapter  Google Scholar 

  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as thiol enzyme. Plant Cell Physiol 25:85–92

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cd toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Hung KT, Chang CJ, Kao CH (2002) Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 159:159–166

    Article  CAS  Google Scholar 

  • Infante-Rivard C, Labuda D, Krajinovi M, Sinnett D (1999) Risk of childhood leukaemia with exposure to pesticides and with gene polymorphisms. Epidemiology 10:481–489

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Casini AF, Nishikimi M (1998) Molecular cloning and functional expression of rat liver glutathione-dependent dehydroascorbate reductase. J Biol Chem 273:28708–28712

    Article  CAS  PubMed  Google Scholar 

  • Ivanov SV, Alexieva VS, Karanov EN (2005) Cumulative effect of low and high atrazine concentrations on Arabidopsis thaliana plants. Russ J Plant Physiol 52(2):213–219

    Article  CAS  Google Scholar 

  • Jaga K, Dharmani C (2003) Sources of exposure to and public health implications of organophosphate pesticides. Pan Am J Public Health 14:171–185

    Article  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265(34):20715–20718

    CAS  PubMed  Google Scholar 

  • Jaworski EG (1972) Mode of action of N-phosphonomethylglycine: inhibition of aromatic amino acid biosynthesis. J Agric Food Chem 20:1195–1198

    Article  CAS  Google Scholar 

  • Jensen KIN, Stephenson GR, Hunt LA (1977) Detoxification of atrazine in three Gramineae subfamilies. Weed Sci 25:212–220

    CAS  Google Scholar 

  • Jiang YP et al (2012) Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol 194:932–943

    Article  CAS  PubMed  Google Scholar 

  • Verkleij JAC, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguebel J-P, Schroder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    Google Scholar 

  • Joshi SC, Gulati N, Gajraj A (2005) Evaluation of toxic impacts of mancozeb on testis in rats. Asian J Exp Sci 19:73–83

    CAS  Google Scholar 

  • Kamanyire R, Karalliedde L (2004) Organophosphate toxicity and occupational exposure: in-depth review. Occup Med 54:69–75

    Article  CAS  Google Scholar 

  • Kanazawa S, Sano S, Koshiba T, Ushimaru T (2000) Changes in antioxidative in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Plant Physiol 109:211–216

    Article  CAS  Google Scholar 

  • Karpinska B, Karlsson M, Schinkel H, Streller S, Su¨ss KH, Melzer M et al (2001) A novel superoxide dismutase with a high isoelectric point in higher plants. Expression, regulation, and protein localization. Plant Physiol 126:1668–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan R, Davis LC, Erickson LE, Al-Khatib K, Kulakow PA, Barnes PL, Hutchinson SL, Nurzhanova AA (2004) Studies on responses of non-target plants to pesticides: a review. Available at http://www.engg.ksu.edu/HSRC/karthipesticide.pdf

  • Katerova ZI, Miteva LPE (2010) Glutathione and herbicide resistance in plants In: Anjum NA (eds) Ascorbate-Glutathione pathway and stress tolerance in plants. doi: 10.1007/978-90-481-9404-9_6

    Google Scholar 

  • Kaushik S, Inderjit S (2006) Phytotoxicity of selected herbicides to mung bean (Phaseolus aureus Roxb.). Environ Exp Bot 55:41–48

    Article  CAS  Google Scholar 

  • Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837

    CAS  PubMed  Google Scholar 

  • Kenaga EE, Whitnoy WK, Hardy JL, Doty AE (1965) Laboratory test with dursban insecticide. J Econ Entomol 58:1043–1058

    Article  CAS  Google Scholar 

  • Khan NA, Singh S (eds) (2008) Abiotic stress and plant responses. I K International, New Delhi

    Google Scholar 

  • Kingston-Smith AH, Foyer CH (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130

    Article  CAS  PubMed  Google Scholar 

  • Kleijn G, Snoeijing IJ (1997) Field boundary vegetation and the effects of agrochemical drift: botanical change caused by low levels of herbicide and fertilizer. J Appl Ecol 34(6):1413–1425

    Article  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M, Gwózdz EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kozawa K, Aoyama Y, Mashimo S, Kimura H (2009) Toxicity and actual regulation of organophosphate pesticides. Toxicol Rev 28:245–254

    CAS  Google Scholar 

  • Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Biofertil Biopestici 6:e129

    Article  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Latowski D, Surówka E, Strzaka K (2010) Regulatory role of components of ascorbate–glutathione pathway in plant stress tolerance. In: Anjum NA (ed) Ascorbate-Glutathione pathway and stress tolerance in plants. doi: 10.1007/978-90-481-9404-9_1

    Google Scholar 

  • Leavitt JRC, Penner D (1979) In-vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J Agric Food Chem 27:533–536

    Article  CAS  Google Scholar 

  • Letouze A, Gasquez J (2003) Enhanced activity of several herbicide-degrading enzymes: a suggested mechanism responsible for multiple resistance in blackgrass (Alopecurus myosuroides Huds.). Agronomie 23:601–608

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao X, Matsui S, Maezawa S (2004) Changes in antioxidative levels in aging cucumber (Cucumis sativus L.) leaves. J Jpn Soc Hort Sci 73:491–495

    Article  CAS  Google Scholar 

  • Liu H, Weisman D, Ye YB, Cui B, Huang YH, Colo´ n-Carmona A, Wang ZH (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • López-Pérez GC, Arias-Estévez M, Ló pez-Periago E, Soto-Gonzalez B, Cancho-Grande B, Simal-Gandara J (2006) Dynamics of pesticides in potato crops. J Agric Food Chem 54:1797–1803

    Article  PubMed  CAS  Google Scholar 

  • Luscombe BM, Pallett KE, Loubiere P, Millet J, Melgorejo J, Vrabel TE (1995) RPA 201772 a novel herbicide for broad leaf and grass weed control in maize and sugarcane. Proc Brighton Crop Prot Conf Weeds 2:35–42

    Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferases: structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    Article  CAS  PubMed  Google Scholar 

  • Marcacci S, Raveton M, Ravanel P, Schwitzgúebel JP (2006) Conjugation of atrazine in vetiver (Chrysopogon zizanioides Nash) grown in hydroponics. Environ Exp Bot 56:205–215

    Article  CAS  Google Scholar 

  • Mathur SC (1999) Future of Indian pesticides industry in next millennium. Pestic Inf 24(4):9–23

    Google Scholar 

  • Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbakaya CFL, Ohayo-Mitoko GJA, Ngowi AVF, Mbabazi R, Simwa JM, Maeda DN, Stephens J, Hakuza H (1994) The status of pesticide usage in East Africa. Afr J Health Sci 1:37–41

    PubMed  Google Scholar 

  • Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44

    Article  CAS  PubMed  Google Scholar 

  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Meyer A, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM, Abraham G (2008) Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pestic Biochem Physiol 92:30–37

    Article  CAS  Google Scholar 

  • Miteva L (2005) Glutathione and glutathione S-transferase – physiological function in plants, grown on normal and stress conditions. Plant Sci 42:483–494

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Bak S, LindbergMoller B, Werck-Reichhart D (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162

    Article  CAS  PubMed  Google Scholar 

  • Moreland DE, Blackmon WJ, Todd HG, Farmer FS (1970) Effects of diphenylether herbicides on reactions of mitochondria and chloroplasts. Weed Sci 18:636–641

    Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935

    Article  CAS  PubMed  Google Scholar 

  • Mougin CP, Corio-Costet MF, Werck-Reichhart D (2001) Plant and fungal cytochrome P-450s: their role in pesticide transformation. In: Hall JC, Hoagland RE, Zoblotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 166–181

    Chapter  Google Scholar 

  • Murthy GP, Prasad GM, Sudarshana MS (2005) Toxicity of different imbibition periods of dimethoate on germination, chlorophyll a/b and dry matter of Glycine max (L.) Merrill. cv. KHSB-2, during early seedling growth. J Physiol Res 18(2):199–201

    CAS  Google Scholar 

  • Myouga F, Hosoda C, Umezaw T, Iizumi H, Kuromori T, Motohashid R et al (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20:3148–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemat Alla M, Badawi A-HM, Hassan NM, El-Bastawisy ZM, Badran EG (2008) Herbicide tolerance in maize is related to increased levels of glutathione and glutathione-associated enzymes. Acta Physiol Plant 30:371–379

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos Trans R Soc B Biol Sci 355:1465–1475

    Article  CAS  Google Scholar 

  • Norris LA, Freed VH (1966a) The absorption and translocation characteristics of several phenoxyalkyl acid herbicides in bigleaf maple. Weed Res 6(3):203–211

    Article  CAS  Google Scholar 

  • Norris LA, Freed VH (1966b) The metabolism of a series of chlorophenoxyalkyl acid herbicides in bigleaf maple. Weed Res 6(3):212–220

    Article  CAS  Google Scholar 

  • Norris LA, Freed VH (1966c) The absorption, translocation, and metabolism characteristics of 4-(2,4-dichlorophenoxy)butyric acid in big leaf maple. Weed Res 6(4):283–291

    Article  CAS  Google Scholar 

  • Obrigawitch TT, Cook G, Wetherington J (1998) Assessment of effects on non-target plants from sulfonylurea herbicides using field approaches. Pestic Sci 52:199–217

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agri Sci 144:31

    Article  Google Scholar 

  • Oettmeier W, Soil H-J, Neumann E (1984) Herbicide and plastoquinone binding to photosystem II. Z Naturforsch 39(c):393–396

    Google Scholar 

  • Ogutcu A, Suludere Z, Kalender Y (2009) Dichlorvos-induced hepatotoxicity in rats and the protective effects of vitamins C and E. Environ Toxicol Pharmacol 26:355–361

    Article  CAS  Google Scholar 

  • Ogweno JO, Song XS, Hu WH, Shi K, Zhou YH, Yu JQ (2009) Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Sci Hortic 123:17–22

    Article  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr AF, Xiang C, Oliver DJ (2007) Characterization of the extracellular c-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49:865–877

    Article  CAS  PubMed  Google Scholar 

  • Orr GL, Hess FD (1982) Mechanism of action of the diphenyl ether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons: light activation and the subsequent formation of lipophilic free radicals. Plant Physiol 69:502–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes controlling development through hormone signaling. Plant Cell 15:1212–1226

    Article  CAS  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontaínhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pest Biochem Physiol 85:91–96

    Article  CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Pimental D, Levitan L (1986) Pesticides: amounts applied and amounts reaching pests. Biosciences 36:86–91

    Article  Google Scholar 

  • Pope CN (1999) Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health 2:161–181

    Article  CAS  Google Scholar 

  • Popova LP, Ananieva EA, Alexieva VS (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    Article  Google Scholar 

  • Popova LP, Ananieva EA, Christov KN (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J Plant Physiol 161:319–328

    Article  PubMed  Google Scholar 

  • Pritchard MK, Warren GF, Dilley RA (1980) Site of action of oxyfluorfen. Weed Sci 28(6):640–645

    CAS  Google Scholar 

  • Qiu BS, Liu JY, Liu ZL, Liu SX (2002) Distribution and ecology of the edible cyanobacterium Ge-Xian-Mi (Nostoc) in rice fields of Hefeng county in China. J Appl Phycol 14:423–429

    Article  CAS  Google Scholar 

  • Radwan DEM (2012) Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pestic Biochem Physiol 102:182–188

    Article  CAS  Google Scholar 

  • Ramel F, Sulmon C, Bogard M, Coue´e I, Gouesbet G (2009) Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, El Amrani A, Coue´e I, Gouesbet G (2007) Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Rendon JL, Pardo JP, Mendoza-Hernandez G, Rojo-Dominguez A, Hernandez-Arana A (1995) Denaturing behavior of glutathione reductase from cyanobacterium Spirulina maxima in guanidine hydrochloride. Arch Biochem Biophys 318:264–270

    Article  CAS  PubMed  Google Scholar 

  • Riechers DE, Kreuz K, Zhang Q (2010) Detoxification without intoxication: herbicide safeners activate plant defense gene expression. Plant Physiol 153:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts T (ed) (2000) Metabolism of agrochemicals in plants. Wiley, New York, p 300

    Google Scholar 

  • Rodrigues BN, Almeida FLS (1998) Guia de Herbicidas. IAPAR, Londrina, p 648

    Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Article  CAS  PubMed  Google Scholar 

  • Rushmore TH, Pickett CB (1993) Glutathione S-transferase: structure, regulation, and therapeutic implications. J BiolChem 268:11475–11478

    CAS  Google Scholar 

  • Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9:49–89

    Article  CAS  PubMed  Google Scholar 

  • Sachs RM, Michael JL (1971) Comparative phytotoxicity among four arsenical herbicides. Weed Sci 19:558–564

    CAS  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogenetics 4:225–241

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H Jr, Hertkorn N, May RG, Lange BM (2001) Bound pesticidal residues in crop plants: chemistry, bioavailability, and toxicology. In: Hall JC, Hoagland RE, Zoblotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 119–128

    Chapter  Google Scholar 

  • Santi R, de Pietri-Tonelli P (1959) Mode of action and biological properties of the S-(Methylcarbanyl) methyl O, O-dimethyldithiophosphate. Nature 183:398–399

    Article  CAS  PubMed  Google Scholar 

  • Saraf M, Sood N (2002) Influence of monocrotophos on growth oxygen uptake and exopolysaccharide production of Rhizobium NCIM 2771 on chickpea. J Indian Bot Soc 82:157–164

    Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Saulsbury MD, Heyliger SO, Wang K, Johnson DJ (2009) Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 259:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schroder P, Collins CJ (2002) Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants. Int J Phytorem 4:247–265

    Article  Google Scholar 

  • Schroder P, Scheer C, Belford EJD (2001) Metabolism of organic xenobiotics in plants: conjugating enzymes and metabolic endpoints. Minerva Biotechnol 13:85–91

    Google Scholar 

  • Senseman SA (2007) Herbicide handbook, 9th edn. Weed Science Society of America, Lawrence

    Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pest Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2013) Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pestic Biochem Physiol 105:144–153

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • SharmA Y, Bashir S, Irshad M, Gupta SD, Dogra TD (2005) Effects of acute dimethoate on antioxidant status of liver and brain of experimental rats. Toxicology 206:49–57

    Article  CAS  PubMed  Google Scholar 

  • Shittu M, Ayo JO, Ambali SF, Fatihu MY, Onyeanusi BI, Kaw MU (2012) Chronic chlorpyrifos-induced oxidative changes in the testes and pituitary gland of Wistar rats: Ameliorative effects of vitamin C. Pestic Biochem Physiol 102:79–85

    Article  CAS  Google Scholar 

  • Shivaramaiah HM, Kennedy IR (2006) Biodegradation of endosulfan by a soil bacterium. J Environ Sci Health B 41:895–905

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA (2004) Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132–151

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA (2005) Developmental neurotoxicity of organophosphates: a case study of chlorpyrifos. In: Gupta RC (ed) Toxicity of organophosphate and carbamate pesticides. Elsevier Academic Press, San Diego, pp p293–p314

    Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smith C (2001) Pesticide exports from US ports, 1997–2000. Int J Occup Environ Health 74:266–274

    Article  Google Scholar 

  • Song NH, Chen L, Yang H (2008) Effect of dissolved organic matter on mobility and activation of chlorotoluron in soil and wheat. Geoderma 146:344–352

    Article  CAS  Google Scholar 

  • Song NH, Yang ZM, Zhou LX, Wu X, Yang H (2006) Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum. J Environ Sci 18:101–108

    Article  CAS  Google Scholar 

  • Song NH, Yin X, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Article  CAS  Google Scholar 

  • Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  PubMed  Google Scholar 

  • Steenland K, Dich RB, Howell RJ, Chrislip DW, Hines CJ, Reid TM, Lehman E, Laber P, Krieg EF, Knot C (2000) Neurologic function among termiticide applicators exposed to chlorpyrifos. Environ Health Perspect 108:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai G, Kellős T, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress condition. Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Tebourbi O, Sakly M, Rhouma KB (2011) Molecular mechanisms of pesticide toxicity. In: Stoytcheva M (ed) Pesticides in the modern world – Pests control and pesticides exposure and toxicity assessment. ISBN: 978-953-307-457-3

    Google Scholar 

  • Teixeira MC, Duque P, Sa´-Correia I (2007) Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2,4-D. Trends Biotechnol 25:363–370

    Article  CAS  PubMed  Google Scholar 

  • Thenaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci U S A 92:4158–4163

    Article  Google Scholar 

  • Theodolou F (2000) Plant ABC transporters. Biochim Biophys Acta 1465:79–103

    Article  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L et al (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida S, Sato K (1992) Glutathione S-transferases and cancer. CRC Crit Rev Biochem Mol Biol 27:337–384

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Meth Enzymol: Osmosens Osmosignal 428:419–438

    Article  CAS  Google Scholar 

  • Ulmasov T, Ohimiya A, Hagen G, Guilfoyle T (1995) The soybean GH2/4 gene that encodes a glutathione -S-transferase has a promoter that is activated by a wide range of chemical agents. Plant Physiol 108:919–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2015) World population prospects: The 2015 revision, key findings and advance tables. Working Paper No. ESA/P/WP.241

    Google Scholar 

  • Unver T, Bakar M, Shearman RC, Budak H (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Gen Genomics 283:397–413

    Article  CAS  Google Scholar 

  • Van derWerf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosys Environ 60:81–96

    Article  Google Scholar 

  • Vasileva V, Ilieva A (2007) Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L.). Agron Res 5:87–92

    Google Scholar 

  • Wagner D, Przybyla D, Op den Camp R, Kim C, Langraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Li Y, Ren D, Song CP (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell 22:2981–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washko PW, Welch RW, Dhariwal KR, Wang Y, Levine M (1992) Ascorbic acid and dehydro-ascorbic acid analyses in biological samples. Anal Biochem 204:114

    Article  Google Scholar 

  • Wauchope RD (1983) Uptake, translocation and phytotoxicity of arsenic in plants. In: Lederer WH, Fensterhein RJ (eds) Arsenic: industrial biomedical and environmental perspective. Van Nostrand Reinhold, New York, pp 348–375

    Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–122

    Article  CAS  PubMed  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkowski DA, Halling BP (1989) Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol 90:1239–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf AE, Dietz KJ, Schroder FP (1996) A carboxypeptidase degrades glutathione conjugates in the vacuoles of higher plants. FEBS Lett 384:31–34

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2007) The impact of pesticides on health preventing intentional and unintentional deaths from pesticide poisoning. Available at:http://www.who.int/mentalhealth/prevention/suicide/en/pesticidesHealth2.pdf

  • Xia XJ et al (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Zhou Q, He Z, Bao Y (2010) Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.). Environ Toxicol Chem 29:922–928

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yanai J, Vatury O, Slotkin TA (2002) Cell signalling as a target and underlying mechanism for neurobehavioural teratogenesis. Ann NY Acad Sci 965:473–478

    Article  CAS  PubMed  Google Scholar 

  • Yang ZM, Wang J, Wang SW, Xu LL (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    CAS  PubMed  Google Scholar 

  • Yen JH, Sheu WS, Wang YS (2003) Dissipation of herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater. Ecotoxicol Environ Saf 54:151–156

    Article  CAS  PubMed  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13

    Article  CAS  PubMed  Google Scholar 

  • Zablotowicz RM, Hoagland RE, Lee H, Alber T, Trevors JT, Hall JC, Locke MA (2001) Transformation of nitroaromatic pesticides and related xenobiotics by microorganisms and plants. In: Hall JC, Hoagland RE, Zoblotowicz RM (eds) Pesticide biotransformation in plants and microorganisms: similarities and divergences, vol 777, ACS symposium series. American Chemical Society, Washington, DC, pp 194–217

    Chapter  Google Scholar 

  • Zhen RG, Singh BJ (2001) From inhibitors to target site genes and beyond—herbicidal inhibitors as powerful tools for functional genomics. Weed Sci 49:266–272

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany, University of Rajasthan, Jaipur, and Head, Department of Botany, University of Allahabad, Allahabad, for their kind cooperation. One of the authors (Neeraj Mishra) wishes to thank the Principal, Atma Ram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi, for his kind cooperation and sympathetic attitude. The authors would also like to thank Mr. Ravi Prakash Dubey, Ms. Pallawi Upadhyaya and Ms. Priya for all sorts of help and cooperation provided during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dubey, G., Mishra, N., Prasad, S.M. (2016). Metabolic Responses of Pesticides in Plants and Their Ameliorative Processes. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_4

Download citation

Publish with us

Policies and ethics