Skip to main content

Regulation of Xenobiotics in Higher Plants: Signalling and Detoxification

  • Chapter
  • First Online:

Abstract

Increased anthropogenic activities have aggravated the different chemical pollutants (xenobiotics) in the environment. Xenobiotics are any chemical or other substance that cannot be utilized by plants for their growth and development. Xenobiotics alone and/or in combination can affect the growth and physiology of every organism, which varies species to species. It may also affect the coordinated signalling pathways that alter the gene expression and regulation in higher plants. Therefore, plants have developed the mechanism for the mobilizations of xenobiotics which include three phases, i.e. transformation, conjugation and compartmentation. Further, plants have also evolved various detoxification processes for these xenobiotics. Therefore, in this chapter the different fates of xenobiotics in plant system as well as their signalling and detoxification processes are discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahammed GJ, Choudhary SP, Chen S et al (2013a) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Ruan YP, Zhou J et al (2013b) Brassinosteroid alleviates polychlorinated biphenyls induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90:2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Zhou YH, Xia XJ et al (2013c) Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol Plant 57(1):154–158

    Article  CAS  Google Scholar 

  • Alla MMN, Badawi AM, Hassan NM et al (2008) Effect of metribuzin, butachlor and chlorimuron-ethyl on amino acid and protein formation in wheat and maize seedlings. Pestic Biochem Physiol 90:8–18

    Article  Google Scholar 

  • Ashton AR, Ziegler P (1987) Lack of effect of the photosystem II-based herbicides diuron and atrazine on growth of photo- heterotrophic Chenopodium rubrum cells at concentrations inhibiting photoautotrophic growth of these cells. Plant Sci 51:269–275

    Article  CAS  Google Scholar 

  • Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N et al (2005) Detoxification and transcriptomr response in Arabidopsis seedlings exposed to the allelochemical bzoxazolin-2 (3H)-one (BOA). J Biol Chem 280:21867–21881

    Article  CAS  PubMed  Google Scholar 

  • Behringer C, Bartsch K, Schaller A (2011) Safeners recruit multiple signalling pathways for the orchestrated induction of the cellular xenobiotic detoxification machinery in Arabidopsis. Plant Cell Environ 34:1970–1985

    Article  CAS  PubMed  Google Scholar 

  • Belkadhi A, Hediji H, Abbes Z et al (2012) Influence of salicylic acid pre-treatment on cadmium tolerance and its relationship with no-protein thiol production in flax root. Afr J Biotechnol 11:9788–9796

    CAS  Google Scholar 

  • Boada J, Roig T, Perez X et al (2000) Cells overexpressing fructose 2, 6- bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. FEBS Lett 480:251–264

    Article  Google Scholar 

  • Bocova B, Huttova J, Mistrık I et al (2013) Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiol Plant 35:2685–2690

    Article  CAS  Google Scholar 

  • Bouzayen M, Latche A, Pech JC et al (1989) Carrier-mediated uptake of 1- (malonylamine)-cyclopropane-1- carboxylic acid in vacuoles isolate from Catharanthus roseus cells. Plant Physiol 91:1317–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazier M, Cole DJ, Edwards R (2002) O-Glucosyl transferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Phytochemistry 59:149–156

    Article  CAS  PubMed  Google Scholar 

  • Christou A, Antoniou C, Christodoulou C et al (2016) Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.). Plants Sci Tot Environ 558:652–664

    Article  Google Scholar 

  • Cole DJ, Edwards R (2000) Secondary metabolism of agrochemicals in plants. In: Roberts TR (ed) Agrochemicals and plant protection. Wiley, Chichester, pp 107–154

    Google Scholar 

  • Coupland D (1991) Detoxification of herbicides in plants. In: Caseley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in crops. Butterworth-Heineman, Oxford, pp 263–278

    Chapter  Google Scholar 

  • Davies J, Caseley JC (1999) Herbicide safeners: a review. Pestic Sci 55:1043–1058

    Article  CAS  Google Scholar 

  • Davies TGE, Coleman JOD (2000) The Arabidopsis thaliana ATP-binding cassette proteins : an emerging superfamily. Plant Cell Environ 23(5):431–443

    Article  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H et al (2005) Cytosolic Ascorbate Peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnam PM, Fernie AR, Leisse A et al (2004) Altered activity of the P2 isoform of plastidic glucose 6-phosphate dehydrogenase in tobacco (Nicotiana tabacum cv. Samsun) causes changes in carbohydrate metabolism and response to oxidative stress in leaves. Plant J 38:49–59

    Article  CAS  PubMed  Google Scholar 

  • DeRidder BP, Dixon DP, Beussman DJ et al (2002) Induction of glutathione-S-transferases in Arabidopsis by herbicide Safeners. Plant Physiol 130(3):1497–1505

    Google Scholar 

  • DeRidder BP, Goldsbrough PB (2006) Organ-specific expression of glutathione-S-transferases and the efficacy of herbicide safeners in Arabidopsis. Plant Physiol 140:167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT et al (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dévier MH, Mazellier P, Ait-Aissa S et al (2011) New challenges in environmental analytical chemistry: identification of toxic compounds in complex mixtures. Comptes Rendus Chimie 14:766–779

    Article  Google Scholar 

  • DiTomaso JM, Hart JJ, Kochain LV (1993) Compartmentation analysis of Paraquat fluxes in maize roots as a means of estimating the rate of vacuolar accumulation and translocation to shoots. Plant Physiol 102:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doczi R, Brader G, Pettko-Szandtner A et al (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards R, Del Buono D, Fordham M et al (2005) Differential induction of glutathione transferases and glucosyltransferases in wheat, maize and Arabidopsis thaliana by herbicide safeners. Zeitschrift Naturforsch Biosci C 60:307–316

    CAS  Google Scholar 

  • Ehlting J, Chowrira SG, Mattheus N et al (2008) Comparative transcriptome analysis of Arabidopsis thaliana infested by diamondback moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism and signalling. BMC Genomics 9:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE et al (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekman DR, Wolfe NL, Dean JF (2005) Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Tech 39:6313–6320

    Article  CAS  Google Scholar 

  • Farago S, Brunold C, Kreuz K (1994) Herbicide safeners and glutathione metabolism. Physiol Plant 91:537–542

    Article  CAS  Google Scholar 

  • Ford KA, Casida JE, Chandran D et al (2010) Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proc Natl Acad Sci USA 107:17527–17532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    Article  CAS  PubMed  Google Scholar 

  • Hall LM, Moss SR, Powles SB (1997) Mechanisms of resistance to aryloxy phenoxy propionate herbicides in two resistant biotypes of Alopecurus myosuroides (black grass): herbicide metabolism as a cross resistance mechanism. Pesticide Biochem Physiol 57:87–98

    Article  CAS  Google Scholar 

  • Hatzios KK (1989) Mechanisms of action of herbicide safeners: an over- view. In: Hatzios KK, Hoagland RE (eds) Crop safeners for herbicides: development, uses and mechanisms of action. Academic, San Diego, pp 65–101

    Chapter  Google Scholar 

  • Hatzios KK, Burgos N (2004) Metabolism-based herbicide resistance: regulation by safeners. Weed Sci 52:454–467

    Article  CAS  Google Scholar 

  • Hauschild R, von Schaewen A (2003) Differential regulation of glucose-6-phosphate dehydrogenase isoenzyme activities in potato. Plant Physiol 133:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez LE, Villasante CO, Montero-Palmero MB et al (2012) Heavy metal perception in a microscale environment: a model system using high doses of pollutants. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin/Heidelberg

    Google Scholar 

  • Holton T, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata Y, Koizumi N (2005) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers P, Kangasjarvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiologia Plant 138:405–413

    Article  CAS  Google Scholar 

  • Jiang QQ, Yang HQ, Sun X et al (2012) Relation between polyamine metabolism and cell death in roots of Malus hupehensis Rehd under cadmium stress. J Int Agri 11:1129–1136

    Google Scholar 

  • Jin XF, Chen C, Han HJ et al (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant napththalene. J HazardMat 189:19–26

    Article  Google Scholar 

  • Kagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Google Scholar 

  • Koch KE (1996) Carbohydrate modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Kreuz LE, Levy AH (1965) Physical properties of chick interferon. J Bacteriol 89:462–469

    Google Scholar 

  • Kreuz KR, Tommasini R, Martinoia E (1996) Old enzymes for a new job: How cells dispose of herbicides. Plant Physiol 111:349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loeffler C, Berger S, Guy A et al (2005) B1-phytoprostanes trigger plant defense and detoxification responses. Plant Physiol 137:328–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupinkova L, Komenda J (2004) Oxidative modifications of the Photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem Photobiol 79:152–162

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione-S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechano transduction. Plant Physiol 135:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  CAS  PubMed  Google Scholar 

  • Mueller MJ, Berger S (2009) Reactive electrophilic oxylipins: pattern recognition and signalling. Phytochemistry 70:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Mueller S, Hilbert B, Dueckershoff K et al (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumma RO, Davidonis GH (1983) Plant tissue culture and pesticide metabolism. In: Huston DH, Roberts TR (eds) Prog in pesticide biochem 3. Wiley, Chichester, pp 255–278

    Google Scholar 

  • Nandula VK, Reddy KN, Rimando AM et al (2007) Glyphosate-resistant and susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545

    Article  PubMed  Google Scholar 

  • Nishikawa F, Kato M, Hyodo H et al (2005) Effect of sucrose on ascorbate level and expression of genes involved in the ascorbate biosynthesis and recycling pathway in harvested broccoli florets. J Exp Bot 56:65–72

    CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43:11321–11330

    Article  CAS  PubMed  Google Scholar 

  • Nogushi T (2002) Dual role of triplet localization on the accessory chlorophyll in the photosystem II reaction center: photoprotection and photodamage of the D1 protein. Plant Cell Physiol 43:1112–1116

    Article  Google Scholar 

  • Owen WJ (2000) Herbicide metabolism as a basis for selectivity. In: Roberts T (ed) Metabolism of agrochemicals in plants. Wiley, Chichester, pp 211–258

    Google Scholar 

  • Peng RH, Xu RR, Fu XY et al (2011) Microarray analysis of the phytoremediation and phytosensing of occupational toxicant napththalene. J Hazard Mat 189:19–26

    Article  CAS  Google Scholar 

  • Ramel F, Sulmon C, Cabello-Hurtado F et al (2007) Genome wide interacting effects of sucrose and herbicide- mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Sulmon C, Bogard M et al (2009) Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramel F, Birtic S, Cuine S et al (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea PA (1999) MRP subfamily ABC transporters from plants and yeasts. J Exp Bot 50:895–913

    Article  CAS  Google Scholar 

  • Rea PA, Martinoia E, Li ZS et al (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  CAS  PubMed  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO (2004) Amino methyl phosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143

    Article  CAS  PubMed  Google Scholar 

  • Riechers DE, Vaughn KC, Molin WT (2005) The role of plant glutathione-S-transferases in herbicide metabolism. In: Clark JM, Ohkawa H (eds) Environmental fate and safety management of agrochemicals, ACS symposium series 899. American Chemical Society, Washington, DC, pp 216–232

    Chapter  Google Scholar 

  • Riechers DE, Kreuz K, Zhang Q (2010) Detoxification without intoxication: Herbicide safeners activate plant defense gene expression. Plant Physiol 153:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinalducci S, Pedersen JZ, Zolla L (2004) Formation of radicals from singlet oxygen produced during photoinhibition of isolated light-harvesting proteins of photosystem II. Biochim Biophys Acta 1608:63–73

    Article  CAS  PubMed  Google Scholar 

  • Rishi A, Muni S, Kapur V et al (2004) Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray. Planta 220:296–306

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell Suppl 14:S185–S205

    CAS  Google Scholar 

  • Rutherford AW, Krieger-Liszkay A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648–653

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Tyrrell RM (1998) Singlet molecular oxygen: a possible effector of eukaryotic gene expression. Free Radical Biol Med 24:1520–1534

    Article  CAS  Google Scholar 

  • Saari LL, Cotterman JC, Thill DC (1994) Resistance to aceto lactate synthase inhibiting herbicides. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants. Lewis Publisher, Boca Raton, pp 83–139

    Google Scholar 

  • Salvemini F, Franze A, Iervolino A et al (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H (1987) Pestizid-Ruckstande in Nahrungspflanzen. Die Rolle des pflanzlichen Metabolismus. Naturwissenschanften 74:573–578

    Article  CAS  Google Scholar 

  • Schmitt R, Sandermann H Jr (1982) Specific localization of beta-D-glucoside conjugates of 2, 4-dichlorophenoxyacetic acid in soy- bean vacuoles [Glycine max]. Zeitschriftfuer Naturforschung Section C Biosci 37:772–777

    Google Scholar 

  • Schröder P, Daubner D, Maier H et al (2008) Phytoremediation of organic xenobiotics– Glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99(15):7183–7191

    Article  PubMed  Google Scholar 

  • Scott-Craig JS, Casida JE, Poduje L et al (1998) Herbicide safener binding protein of maize: purification, cloning, and expression of an encoding cDNA. Plant Physiol 116:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra AA, Nuttens A, Larvor V et al (2013) Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. J Exp Bot 64:2753–2766

    Article  CAS  PubMed  Google Scholar 

  • Skipsey M, Knight KM, Brazier-Hicks M et al (2011) Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J Biol Chem 286:32268–32276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enol pyruvyl shikimic acid-3-phosphate synthase. Bioch Biophy Res Com 94:1207–1212

    Article  Google Scholar 

  • Sulmon C, Gouesbet G, Couee I et al (2004) Sugar-induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. Plant Sci 167:913–923

    Article  CAS  Google Scholar 

  • Sulmon C, Gouesbet G, El Amrani A et al (2006) Sucrose-induced tolerance to atrazine in Arabidopsis seedlings involves activation of oxidative and xenobiotic stress responses. Plant Cell Rep 25:489–498

    Article  CAS  PubMed  Google Scholar 

  • Szekacs A, Darvas B (2012) Forty years with glyphosate. In: Hasaneen MNAE-G (ed) Herbicides-properties, synthesis and control of weeds. In Tech, Rijeka, pp 247–284

    Google Scholar 

  • Thibaud MC, Gineste S, Nussaume L et al (2004) Sucrose increases pathogenesis-related PR-2 expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent sig- naling pathway. Plant Physiol Biochem 42:81–88

    Article  CAS  PubMed  Google Scholar 

  • Thomas EW, Loughman BC, Powell RG (1964) Metabolic rate of 2, 4-D in the stem tissue of Phaseolus vulgaris. Nature 204:884–885

    Article  CAS  Google Scholar 

  • Timmermann KP (1989) Molecular characterization of corn glutathione-S-transferase isoenzymes involved in herbicide detoxification. Physiol Planta 77:465–471

    Article  Google Scholar 

  • Unver T, Bakar M, Shearman RC et al (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomics 283:397–413

    Article  CAS  PubMed  Google Scholar 

  • Walton JD, Casida JE (1995) Specific binding of a dichloroacetamide herbicide safener in maize at a site that also binds thiocarbamate and chloroacetanilide herbicides. Plant Physiol 109:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JT, Jiang YP, Chen SC et al (2010) The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere 79:958–965

    Article  CAS  PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  CAS  PubMed  Google Scholar 

  • Weisman D, Alkio M, Colon-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol doi. doi:10.1186/1471-2229-10-59

    Google Scholar 

  • Wink M (1997) Special nitrogen metabolism. In: Dey PM, Harborne J (eds) Plant biochemistry. Academic Press, San Diego/London, pp 439–486

    Chapter  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX et al (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Huang Z, Xie B et al (2004) The ethylene, jasmonate, abscisic acid and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 220:262–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Xu FX, Lambert KN et al (2007) Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics 7:1261–1278

    Article  CAS  PubMed  Google Scholar 

  • Zhang JJ, Lu YC, Zhang SH et al (2016) Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination. Ecotoxicol Environ Saf 130:103–112

    Article  CAS  PubMed  Google Scholar 

  • Zheleva DT, Tsonev T, Sergiev I et al (1994) Protective effect of exogenous polyamines against atrazine in pea plants. J Plant Growth Regul 13:203–211

    Article  CAS  Google Scholar 

  • Zhou Y, Xia X, Yu G et al (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018. doi:10.1038/srep09018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, S., Bashri, G., Singh, A., Prasad, S.M. (2016). Regulation of Xenobiotics in Higher Plants: Signalling and Detoxification. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_3

Download citation

Publish with us

Policies and ethics