Skip to main content

Heavy Metal and Their Regulation in Plant System: An Overview

  • Chapter
  • First Online:
Book cover Plant Responses to Xenobiotics

Abstract

Unplanned industrialization and improper waste disposal have resulted in the release of enormous quantities of inorganic toxicants like metal, metalloids, and radionuclides in the biosphere. Since, metals are non-biodegradable and tend to bioaccumulate via food chain, they pose threat to human health. Indiscriminate disposal of industrial waste to the environment causes adverse impact on ecosystem. Plants growing on metal-contaminated sites display several disturbances related to physiology and biochemical process like gaseous exchange, CO2 fixation, respiration, nutrient absorption, etc. These disturbances subsequently cause reduction in plant growth and lower biomass production. Although being an essential micronutrient, some heavy metals at lower concentrations are vital for plant growth; however, at higher concentrations they become very toxic. To cope up with the metal toxicity, plants have developed various mechanisms like immobilization, exclusion, chelation, and compartmentization. Plants have distinct cellular mechanism such as chelation and vacuolar compartmentization of metals to withstand the metal toxicity. Phytochelatins, the thiol peptides, potentially chelate metals and form complexes in cytoplasm; subsequently these metal-thiol complexes are sequestrated into vacuole via ATP-binding cassette transporters (ABC transporters). In the last couple of decades, the role of phytochelatin synthetase (PCS) and phytochelatins (PCs) in metal detoxification has been proven. In present scenario, there is a great need of sound and intensified research for better understanding of metal toxicity and its metabolism in plants to maintain our ecological harmony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M et al (2015a) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M et al (2015b) Mechanism of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxical Environ Safe 119:186–197

    Article  CAS  Google Scholar 

  • Adriano D (1992) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton

    Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58

    Article  Google Scholar 

  • Ahmad MS, Ashraf M (2011) Essential roles and hazardous effects of nickel in plants. Rev Environ Contam Toxicol 214:125–167

    CAS  PubMed  Google Scholar 

  • Ahn YO, Kim SH, Lee J, Kim HR, Lee H-S, Kwak S-S (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39(3):2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Micronutrients and crop production: an introduction. In Alloway BJ (ed) Micronutrient deficiency in global crops production. Springer, Dordrecht, pp 1–40

    Google Scholar 

  • AMAP (2002) Arctic pollution Arctic monitoring and assessment program Oslo, Norvay, XII + 111

    Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B et al (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Asgher M, Iqbal M, Khan R, Naser AA, Nafees AK (2015) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Assche VF, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of stress on photosynthesis. Nijhoff/Junk The Hague 7: 371–382

    Google Scholar 

  • Assche VF, Clijsters H (1990) Effect of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Bachman GR, Miller WB (1995) Iron chelate inducible iron/manganese toxicity in zonal geranium. J Plant Nutr 18:1917–1929

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. Int J Phytorem 14:772–785

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremidation of toxic metals-using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Bluskov S, Arocena JM, Omotoso OO, Young JP (2005) Uptake, distribution and speciation of chromium in Brassica juncea. Int J Phytorem 7(2):153–155

    Article  CAS  Google Scholar 

  • Bot LJ, Kirkby EA, Beusichem ML (1990a) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr 13:513–525

    Article  Google Scholar 

  • Bot LJ, Kirkby EA, Beusichem ML (1990b) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutr 13:5–13

    Article  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Buchanan B, Grusen W, Jones R (2000) Biochemistry and molecular biology of plants. Ame Soc Plant Physiol Maryland 1367

    Google Scholar 

  • Cakmak I (2000) Possible roles of Zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29:127–136

    Article  CAS  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798

    Article  CAS  PubMed  Google Scholar 

  • Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutr 19:901–916

    Article  CAS  Google Scholar 

  • Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalcorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280

    Article  CAS  PubMed  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):1–5

    Article  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Davies BE (1995) Lead and other heavy metals in urban areas and consequences for the health of their inhabitants. In: Majumdar SK, Miller EW, Brenner FJ (eds) Environmental contaminants, ecosystems and human health. The Pennsylvania Academy of Science, Easton, pp 287–307

    Google Scholar 

  • De DN (2000) Plant cell vacuoles. CSIRO Publishing, Collingwood

    Google Scholar 

  • Degraeve N (1981) Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat Res 117:19–27

    Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione-a magnetic-resonance study. Chem Biol Interact 90:139–155

    Article  CAS  PubMed  Google Scholar 

  • Demirevska-kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barely plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Dhankhar R, Sainger PA, Sainger M (2012) Phytoextraction of zinc: physiological and molecular mechanism. Soil Sediment Contam 21:115–133

    Article  CAS  Google Scholar 

  • Dietz K-J, Baier M, Kra¨mer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Google Scholar 

  • Ducic T, Polle A (2007) Manganese toxicity in two varieties of Douglas fir (Pseudotsuga menziesii var. viridis and glauca) seedlings as affected by phosphorus supply. Funct Plant Biol 34:31–40

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on musk melon growth and manganese toxicity. J Am Soc Hortic Sci 111:582–587

    CAS  Google Scholar 

  • Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on water melon growth and manganese toxicity. J Am Soc Hortic Sci 111:588–593

    CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerlandica 41:229–248

    Article  CAS  Google Scholar 

  • Fageria N, Baligar V, Clark R (2002) Micronutrients in crop production. Adv Agron 77:185–268

    Article  CAS  Google Scholar 

  • Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25

    Article  CAS  PubMed  Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730

    Article  CAS  Google Scholar 

  • Foy C, Chaney R, White M (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutr 18:685–706

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48:225–232

    Article  CAS  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Archiv Microbiol 150:197–202

    Article  CAS  Google Scholar 

  • Godzik B (1993) Heavy metal contents in plants from zinc dumps and reference area. Pol Bot Stud 5:113–132

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  • Guest C, Schulze D, Thompson I, Huber D (2002) Correlating manganese X-ray absorption near-edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Article  CAS  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increase the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali M (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22:1534–1544

    Article  CAS  Google Scholar 

  • Haghiri F (1973) Cadmium uptake by plants. J Environ Qual 2:93–96

    Article  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  PubMed  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Horst WJ (1988) The physiology of manganese toxicity. In: Graham RD, Hannam RJ, Uren NJ (eds) Manganese in soil and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188

    Chapter  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 3(4):65–73

    Article  Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73(9):2007–2013

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aus J Crop Sci 3(2):53–64

    CAS  Google Scholar 

  • Hossain MA, Hossain MD, Rohman MM, da Silva JAT, Fujita M (2012a) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova, New York

    Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012b) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi:10.1155/2012/872875

    Google Scholar 

  • Huffman EWD Jr, Allaway HW (1973) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986

    Article  PubMed  Google Scholar 

  • Humphries J, Stangoulis J, Graham R (2007) Manganese. In: Pilbeam D, Barker A (eds) Handbook of plant nutrition. Taylor and Francis, Boca Raton, pp 351–366

    Google Scholar 

  • Iwasaki K, Sakurai K, Takahashi E (1990) Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci Plant Nutr 36:431–439

    Article  Google Scholar 

  • James BR, Barlett RJ (1983) Behavior of chromium in soils VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12:177–181

    Article  CAS  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  CAS  PubMed  Google Scholar 

  • Kara Y (2005) Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinal. Int J Environ Sci Technol 2(1):63–67

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian J-C, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997a) Effect of manganese toxicity on photosynthesis of white birch (Betula platyphylla var. japonica) seedlings. Physiol Plant 101:249–256

    Article  CAS  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynth 36:3–14

    Google Scholar 

  • Kogelmann W, Sharpe W (2006) Soil acidity and manganese in declining and non-declining sugar maple stands in Pennsylvania. J Environ Qual 35:433–441

    Article  CAS  PubMed  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer U, Talke I, Hanikenne M (2007) Transition metal transport. Fed Eur Biochem Soc Lett 581(12):2263–2272

    Article  CAS  Google Scholar 

  • Kumar N, Bauddha K, Kumar S, Dwivedi N, Singh DC, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495

    Article  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  PubMed  Google Scholar 

  • Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 43:231–236

    Google Scholar 

  • Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138(2):827–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerch K (1980) Copper metallothionein, a copper binding protein from Neurospora crassa. Nature (London) 284:368–370

    Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    Article  CAS  PubMed  Google Scholar 

  • Loneragan JF (1988) Distribution and movement of manganese in plants. In: Hannam RJ, Uren NC, Graham RD (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 113–124

    Chapter  Google Scholar 

  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Mahmood T, Islam KR (2006) Response of rice seedlings to copper toxicity and acidity. J Plant Nutr 29:943–957

    Article  CAS  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equinr kidney cortex. J Am Chem Soc 79(17):4813–4814

    Article  CAS  Google Scholar 

  • Masion A, Bertsch PM (1997) Aluminium speciation in the presence of wheat root cell walls: a wet chemical study. Plant Cell Environ 20:504–512

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Springer T (ed) Advances in biochemical engineering/biotechnology, vol 78. Springer, Heidelberg, pp 97–123

    Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  PubMed  Google Scholar 

  • Mildvan AS (1970) Metal in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol 11. Academic, London, pp 445–536

    Google Scholar 

  • Miller RJ, Koeppe DE (1971) Accumulation and physiological effects of lead in corn. In: Proceedings of University of Missouri, Columbia 4: 186–193

    Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic in tomatoes. Commun Soil Sci Plant Anal 33(11):1917–1926

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    Article  CAS  Google Scholar 

  • Monni S, Salemma M, Millar N (2000) The tolerance of empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    Article  CAS  PubMed  Google Scholar 

  • Morel JL, Mench M, Guchert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soil 2(1):29–34

    Article  Google Scholar 

  • Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutr 23:243–250

    Article  CAS  Google Scholar 

  • Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora losiel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten arabidopsis ecotypes correlation with copper tolerance. Plant Physiol 109:945–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Nakazawa R, Kameda Y, Ito T, Ogita Y, Michihata R, Takenaga H (2004) Selection and characterization of nickel tolerant tobacco cells. Biol Plant 48:497–502

    Article  CAS  Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Environ Pol Technol 1:285–290

    CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Poll B 1:3–26

    Article  CAS  Google Scholar 

  • Oehlkers F (1953) Chromosomal breaks influenced by chemicals. Heredity 6:95–105

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119

    Article  CAS  Google Scholar 

  • Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    Article  CAS  Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. Bull Environ Cont Toxicol 66:727–734

    CAS  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayana M, Saupea G, Gardea-Torresdeya J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochem 60:153–162

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  PubMed  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L). Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rizwan M, Ali S, Adrees M et al (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res. doi:10.1007/s11356-016-6436-4

    Google Scholar 

  • Ros R, Cook DT, Picazo C, Martinez-Cortina I (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, atpase hydrolytic activity and proton pumping of rice (Oryza sativa L. cv. Bahia) Shoots. J Exp Bot 43:1475–1481

    Article  CAS  Google Scholar 

  • Rosas I, Carbajal ME, Gomez-Arroyo S, Belmont R, Villalogos-Pietrini R (1984) Cytogenic effects on cadmium accumulation on water hyacinth (Eichornia crassipes). Environ Res 33:386–395

    Article  CAS  PubMed  Google Scholar 

  • Rudakova EV, Karakis KD, Sidorshina ET (1988) The role of plant cell walls in the uptake and accumulation of metal ions. Fiziol Biochim Kult Rast 20:3–12

    CAS  Google Scholar 

  • Ryvolova M, Krizkova S, Adam V, Beklova M, Trnkova L, Hubalek J, Kizek R (2011) Analytical methods for metallothionein detection. Curr Anal Chem 7:243–261

    Article  CAS  Google Scholar 

  • Sakakibara M, Ohmoril Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39(8):735–741

    Article  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarakoon AB, Rauser WE (1979) Carbohydrate levels and photo-assimilate export from leaves of Phaseolus vulgaris exposed to excess cobalt, nickel, and zinc. Plant Physiol 63:1165–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seregin IV, Ivaniov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Fiziol Rast Plant Physiol 48:525–533

    Google Scholar 

  • Seregin IV, Ivaniov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544

    Article  CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Silverberg BA (1976) Cadmium-induced ultrastructural changes in mitochondria of freshwater green algea. Phycologia 15:155–159

    Article  CAS  Google Scholar 

  • Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  PubMed  Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and transcolation of heavy metals in soil and plants from fly ash contamination. Environ Biol 3:421–430

    Google Scholar 

  • Srivastov RK, Gupta SK, Nýgam KDP, Vasudevan P (1994) Treatment of chromium and nickel in wastewater by using aquatic plants. Water Resour 28(7):1631–1638

    Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in as-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452

    Article  Google Scholar 

  • Suzuki KT, Someya A, Komada Y, Ogra Y (2002) Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. J Inorg Biochem 88:173–182

    Article  CAS  PubMed  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryanthemum crystallium. Physiol Plant 102:360–368

    Article  CAS  Google Scholar 

  • Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiol 100(1):309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomaszewska B, Tukendorf A, Baralkiewicz D (1996) The synthesis of phytochelatins in lupin roots treated with lead ions. Sci Legum 3:206–217

    CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Bhatia B, Mohanty P (1981) Inactivation of chloroplast photosynthetic electron-transport activity by Ni2+. Biochim Biophys Acta 638:217–224

    Article  CAS  Google Scholar 

  • Vatamauniuk OK, Mari S, Lu YP, Rea PA (2000) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115

    Article  Google Scholar 

  • Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  • Venugopal B, Luckey TD (1978) Metal toxicity of mammals. Plenum, New York

    Google Scholar 

  • Vikram A, Johri T, Tandon PK (2011) Effect of chromium (IV) on growth and metabolism of Spinacia oleracea (Spinach) plants. Res Environ Life Sci 4(3):119–124

    Google Scholar 

  • Von Rosen G (1954) Mutation induced by actions of localization of cadmium and cadmium binding peptides in tobacco leaves. Plant Pathol 92:1086–1093

    Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, Mcgrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watmough S, Eimer M, Dillon P (2007) Manganese cycling in central Ontario forests: response to soil acidification. Appl Geochem 22:1241–1247

    Article  CAS  Google Scholar 

  • Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutr 17:993–1003

    Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035

    Article  CAS  Google Scholar 

  • Yang X, Liu J, McGrouther K, Huang H et al (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984

    Article  CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42(38):56–60

    Google Scholar 

  • Zayed AM, Terrey N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249(1):139–156

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath MP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Xu Y, Li J, Yang L, Liu J-L (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39(5):595–606

    CAS  PubMed  Google Scholar 

  • Zhu Y-G, Ralf K, Tong Y-P (2004) vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9(1):7–9

    PubMed  Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, D., Singh, D.P., Barman, S.C., Kumar, N. (2016). Heavy Metal and Their Regulation in Plant System: An Overview. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_2

Download citation

Publish with us

Policies and ethics