Skip to main content

Biodegradable Polyhydroxyalkanoate Thermoplastics Substituting Xenobiotic Plastics: A Way Forward for Sustainable Environment

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Conventional plastics such as polyethylene, polypropylene, polystyrene, poly(vinyl chloride), and poly(ethylene terephthalate) are high-molecular-weight polymeric materials which vary from 50,000 to 1,000,000 Da. They have attained unique position in modern material technology. They are omnipresent in today’s society with range from ordinary to high-tech, from vital to entirely lavish. These plastics have diverse feasible application in every field of industries/factories ranging from automobiles to medicine owing to their promising material properties, viz., lightweight, stability, long durability, economic viability, and feasibility to manipulate a range of strengths and shapes. The resistance to degradation, stability, and long durability are some miracle features associated with these plastic materials while in use. However, such properties become detrimental to the environment when out of usage, being synthetic polymers and exceptionally recalcitrant to microbial attack, i.e., nonbiodegradable (xenobiotic polymeric materials). To combat the menace posed by plastics to the environment, several efforts have been made for developing the products that are eco-friendly and degradable with comparable material properties as that of conventional plastics. This chapter presents a revolutionary insight with various technological strategies to overcome the detrimental effects of conventional plastics with special emphasis to completely biodegradable polyhydroxyalkanoate thermoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short and medium chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153

    Article  CAS  PubMed  Google Scholar 

  • Belay A (2004) Mass culture of Spirulina outdoors – the Earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor and Francis, London, pp 131–158

    Google Scholar 

  • Bernard M (2014) Industrial potential of polyhydroxyalkanoate bioplastic: a brief review. Univ Sask Undergr Res J 1:1–14

    Google Scholar 

  • Bhati R, Mallick N (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J Chem Technol Biotechnol 87:505–512

    Article  CAS  Google Scholar 

  • Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-β-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Tretchewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate up to 4 % of their fresh weight. Planta 211:841–845

    Article  CAS  PubMed  Google Scholar 

  • Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  CAS  PubMed  Google Scholar 

  • Braunegg G, Gilles L, Klaus F (1998) Polyhydroxyalkanoates biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    Article  CAS  PubMed  Google Scholar 

  • Braunegg G, Bona R, Koller M (2004) Sustainable polymer production. Polym-Plast Technol Eng 43:1779–1793

    Article  CAS  Google Scholar 

  • Brophy MR, Deasy PB (1986) In vitro and in vivo studies on biodegradable polyester microparticles containing sulfamethizole. Int J Pharm 29:223–231

    Article  CAS  Google Scholar 

  • Brzostowicz PC, Blasko MS, Rouvière PE (2002) Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl Microbiol Biotechnol 58:781–789

    Article  CAS  PubMed  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  CAS  Google Scholar 

  • Byrom D (1992) Production of poly-β-hydroxybutyrate and poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    CAS  Google Scholar 

  • Caballero KP, Karel SF, Register RA (1995) Biosynthesis and characterization of hydroxybutyrate-hydroxycaproate copolymers. Int J Biol Macromol 17:86–92

    Article  CAS  PubMed  Google Scholar 

  • Cerrone F, Choudhari SK, Davis R et al (2014) Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Appl Microbiol Biotechnol 98:611–620

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications, Microbiology monographs. Springer, Berlin/Heidelberg, pp 17–38

    Chapter  Google Scholar 

  • Chiras DD (1994) Environmental science. The Benjamin/Cumming Publishing Company, Inc., Redwood, p 611

    Google Scholar 

  • Chohan SN, Copeland L (1998) Acetoacetyl coenzyme A reductase and polyhydroxybutyrate synthesis in Rhizobium (Cicer) sp. strain CC 1192. Appl Environ Microbiol 64:2859–2863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Lee SY (1999) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553

    Article  CAS  PubMed  Google Scholar 

  • Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in microorganisms. Adv Microbiol Physiol 10:135–266

    Article  CAS  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  • Drosg B, Fritz I, Gattermayr F, Silvestrini L (2015) Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Eng Q 29:145–156

    Article  CAS  Google Scholar 

  • European Commission (2013) Green paper-on a European strategy on plastic waste in the environment. ec.europa.eu/environment/waste/studies/pdf/green_paper_plastic.pdf

  • Fiechter A (1990) Plastics from bacteria and for bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Springer, New York, pp 77–93

    Google Scholar 

  • Gómez Cardozo JR, Mora Martínez AL, Yepes Pérez M, Correa Londoño GA (2016) Production and characterization of Polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. Int J Polym Sci. Article ID 6541718. http://dx.doi.org/10.1155/2016/6541718

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 156:201–207

    Article  CAS  PubMed  Google Scholar 

  • Gould PL, Holland SJ, Tighe BJ (1987) Polymers for biodegradable medical devices. 4-Hydroxybutyrate valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms. Int J Pharm 38:231–237

    Article  CAS  Google Scholar 

  • Hassan MA, Shirai N, Kusubayashi N, Abdul Karim MI, Nakanishi K, Hashimoto K (1996) Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter sphaeroides. J Ferment Bioeng 82:151–156

    Article  CAS  Google Scholar 

  • Hassan MA, Shirai N, Kusubayashi N, Abdul Karim MI, Nakanishi K, Hashimoto K (1997a) The production of polyhydroxyalkanoates from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J Ferment Bioeng 83:485–488

    Article  CAS  Google Scholar 

  • Hassan MA, Shirai N, Kusubayashi N, Abdul Karim MI, Nakanishi K, Hashimoto K (1997b) Acetic acid separation from anaerobically treated palm oil mill effluent for the production of polyhydroxyalkanoate by Alcaligenes eutrophus. Biosci Biotechnol Biochem 61:1465–1468

    Article  CAS  Google Scholar 

  • Jain R, Kosta S, Tiwari A (2010) Polyhydroxyalkanoates: a way to sustainable development of bioplastics. Chron Young Sci 1:10–15

    CAS  Google Scholar 

  • Joel FR (1995) Polymer science & technology: introduction to polymer science, 3rd edn. Prentice Hall PTR Inc., Upper Saddle River 07458, pp 4–9

    Google Scholar 

  • John ME (1997) Cotton crop improvement through genetic engineering. Crit Rev Biotechnol 17:185–208

    Article  CAS  Google Scholar 

  • Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63

    Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stabil 83:79–86

    Article  CAS  Google Scholar 

  • Kato M, Bao HJ, Kang C-K, Fukui T, Doi Y (1996) Production of novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    Article  CAS  PubMed  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Kumar A, Srivastava JK, Mallick N, Singh AK (2015) Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects. Recent Pat Biotechnol 9:4–21

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1995) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–4

    Article  Google Scholar 

  • Lee EY, Jendrossek D, Schirmer A, Choi CY, Steinbuchel A (1995) Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. Appl Microbiol Biotechnol 42:901–909

    Article  CAS  Google Scholar 

  • Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  • Li QA, Chen QA, Li MJ, Wang FS, Qi QS (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotechnol 28:92–95

    Article  CAS  Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209:135–150

    Article  CAS  PubMed  Google Scholar 

  • Liebergesell M, Schmidt B, Steinbüchel A (1992) Isolation and identiication of granule-associated proteins relevant for poly(3-Hydroxyalkanoic Acid) biosynthesis in Chromatium vinosum D. FEMS Microbiol Lett 99:227–232

    Article  CAS  Google Scholar 

  • Lossl A, Bohmert K, Harloff HJ, Eibl C, Muhlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001) Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19

    Article  PubMed  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisiman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61–3. Biomacromolecules 1:17–22

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y et al (2009) Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromolecules 10:686–690

    Article  CAS  PubMed  Google Scholar 

  • McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181:585–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meesters KHP (1998) Production of poly (3 hydroxyalkanoates) from waste streams. Report of Technical University of Delft, Delft

    Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    Article  CAS  PubMed  Google Scholar 

  • Mittendorf V, Robertson EJ, Leech RM, Krüger N, Steinbuchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc Natl Acad Sci 95:13397–13402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan R (2006) Biobased and biodegradable polymer materials: rationale, drivers, and technology exemplars. In: Khemani K, Scholz C (eds) Degradable polymers and materials: principles and practice. American Chemical Society, Washington, DC, pp 282–306

    Chapter  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci 91:12760–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroyxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate limitation. Biotechnol Lett 23:1095–1099

    Article  CAS  Google Scholar 

  • Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y et al (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20:525–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda B, Mallick N (2007) Enhanced poly-β-hydroxybutyrate accumulation in a unicellular cyanobactrium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44:194–198

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2004) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 113⁄116:335–346

    Google Scholar 

  • Petrasovits LA, McQualter RB, Gebbie LK, Blackman DM, Nielsen LK, Brumbley SM (2013) Chemical inhibition of acetyl coenzyme A carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane. Plant Biotechnol J 11:1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Phithakrotchanakoon C, Champreda V, Aiba S, Pootanakit K, Tanapongpipat S (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Plastics Europe (2010) Plastics – the facts 2010, an analysis of European plastics production, demand and recovery for 2009. Association of Plastics Manufactures. http//plasticseurope.com

    Google Scholar 

  • Plastics Europe (2015) Plastics-the facts 2014/2015: an analysis of European plastics production, demand and waste data. http//plasticseurope.com

    Google Scholar 

  • Poirier Y (1999) Production of new polymeric compounds in plants. Curr Opin Biotechnol 10:181–185

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y (2001) Production of poylesters in transgenic plants. In: Babel W, Steinbuchel A (eds) Biopolyesters. Springer, Berlin, pp 209–240

    Chapter  Google Scholar 

  • Poirier Y, Gruys KJ (2001) Production of polyhydroxyalkanoates in transgenic plants. In: Doi Y, Steinbuchel A (eds) Biopolyester. Wiley-VCH, Weinheim, pp 401–435

    Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produce in transgenic plants. Science 256:520–523

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162

    Article  CAS  Google Scholar 

  • Qi Q, Rehm BHA (2001) Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358

    Article  CAS  PubMed  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Reddy MV, Mohan SV (2015) Polyhydroxyalkanoates production by newly isolated bacteria Serratia ureilytica using volatile fatty acids as substrate: bio-electro kinetic analysis. J Microb Biochem Technol 7:26–32

    Google Scholar 

  • Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146

    Article  CAS  Google Scholar 

  • Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis MAM, Serafim LS, Lemos PC, Ramos AM, Aguiar FR, Van Loosdrecht MCM (2003) Production of polyhydroxyalkanoates by mixed microbial cultures. Biopro Biosyst Eng 25:377–385

    Article  CAS  Google Scholar 

  • Ren Q, De Roo G, Kessler B, Witholt B (2000) Recovery of active medium-chain-length-poly-3hydroxyalkanoate polymerase from inactive inclusion bodies using ion-exchange resin. Biochem J 349:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan W, Chen J, Lun S (2003) Production of biodegradable polymer by A. eutrophus using volatile fatty acids from acidified wastewater. Process Biochem 39:295–299

    Article  CAS  Google Scholar 

  • Sabir I (2004) Plastic industry in Pakistan. http://www.jang.com.pk/thenews/investors/nov2004/index.html

  • Saharan BS, Ankita, Sharma D (2012) Bioplastics for sustainable development: a review. Int J Microbial Res Technol 1:11–23

    Google Scholar 

  • Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    Article  CAS  PubMed  Google Scholar 

  • Samantaray S, Mallick N (2014) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by the diazotrophic cyanobacterium Aulosira fertilissima CCC 444. J Appl Phycol 26:237–245

    Article  CAS  Google Scholar 

  • Samantaray S, Mallick N (2015) Impact of various stress conditions on Poly-β-Hydroxybutyrate (PHB) accumulation in Aulosira fertilissima CCC 444. Curr Biotechnol 4:366–372

    Article  CAS  Google Scholar 

  • Sankhla SS, Bhati R, Singh AK, Mallick N (2010) Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Biores Technol 101:1947–1953

    Article  CAS  Google Scholar 

  • Satoh H, Iwamoto Y, Mino T, Matsuo T (1998) Activated sludge as a possible source of biodegradable plastic. Water Sci Technol 38:103–109

    Article  CAS  Google Scholar 

  • Schnell J, Treyvaud-Amiguet V, Arnason J, Johnson D (2012) Expression of polyhydroxybutyric acid as a model for metabolic engineering of soybean seed coats. Transgenic Res 21:895–899

    Article  CAS  PubMed  Google Scholar 

  • Seymour RB (1989) Polymer science before & after 1899: notable developments during the lifetime of Maurtis Dekker. J Macromol Sci Chem 26:1023–1032

    Article  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  PubMed  Google Scholar 

  • Sharma L, Mallick N (2005) Accumulation of poly-β-hydroxybutyrate in Nostoc muscorum: regulation by pH, light–dark cycles, N and P status and carbon sources. Biores Technol 96:1304–1310

    Article  CAS  Google Scholar 

  • Sheu D-S, Lee C-Y (2004) Altering the substrate specificity of polyhydroxyalkanoates synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis. J Bacteriol 186:4177–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi HP, Lee CM, Ma WH (2007) Influence of electron acceptor, carbon, nitrogen, and phosphorus on polyhydroxyalkanoate (PHA) production by Brachymonas sp. P12. World J Microbiol Biotechnol 23:625–632

    Article  CAS  Google Scholar 

  • Shimao M (2001) Biodegradation of plastics. Curr Opin Biotechnol 12:242–247

    Article  CAS  PubMed  Google Scholar 

  • Shujun W, Jiugao Y, Jinglin Y (2006) Preparation and characterization of compatible and degradable thermoplastic starch/polyethylene film. J Polym Environ 14:1

    Article  CAS  Google Scholar 

  • Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2009a) Exploitation of inexpensive substrates for production of a novel SCL–LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol 36:347–354

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2009b) SCL-LCL-PHA copolymer production by a local isolate, Pseudomonas aeruginosa MTCC 7925. Biotechnol J 4:703–711

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2015) Biological system as a reactor for production of biodegradable thermoplastics, Polyhydroxyalkanoates. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press/Taylor and Francis, USA, pp 281–323

    Google Scholar 

  • Singh AK, Bhati R, Samantaray S, Mallick N (2013) Pseudomonas aeruginosa MTCC 7925: producer of a novel SCL-LCL-PHA co-polymer. Curr Biotechnol 2:81–88

    Article  CAS  Google Scholar 

  • Singh AK, Ranjana B, Mallick N (2015) Pseudomonas aeruginosa MTCC 7925 as a biofactory for production of the novel SCL-LCL- PHA thermoplastic from non-edible oils. Curr Botechnol 4:65–74

    Article  CAS  Google Scholar 

  • Solaiman DKY, Ashby RD, Hotchkiss AT Jr, Foglia TA (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162

    Google Scholar 

  • Somleva M, Ali A (2010) Propagation of transgenic plants. International patent application WO/2010/102220

    Google Scholar 

  • Steinbuchel A (1992) Biodegradable plastics. Curr Opin Biotechnol 3:291–297

    Article  Google Scholar 

  • Steinbuchel A, Pieper U (1992) Production of copolyesters of 3-hydroxybutyric acid and 3-hydroxyvaleric acid by a mutant of Alcaligenes eutrophus from single unrelated carbon sources. Appl Microbiol Biotechnol 37:1–6

    Google Scholar 

  • Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230

    Article  Google Scholar 

  • Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. CLEAN – Soil Air Water 36:433–442

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175

    Article  CAS  PubMed  Google Scholar 

  • Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (1999) Over-expression of 3-ketoacyl-ACP synthase III or malonyl-CoA-ACP transacylase gene induces monomer supply for polyhydroxybutyrate production in Escherichia coli HB101. Biotechnol Lett 21:579–584

    Article  CAS  Google Scholar 

  • Thakor NS, Patel MA, Trivedi UB, Patel KC (2003) Production of poly(β-hydroxybutyrate) by Comamonas testosteroni during growth on naphthalene. World J Microbiol Biotechnol 19:185–189

    Article  CAS  Google Scholar 

  • Thompson RC, Swan SH, Moore CJ, vomSaal FS (2009) Our plastic age. Phil Trans R Soc B 364:1973–1976

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian SJ, Lai WJ, Zheng Z, Wang HX, Chen GQ (2005) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25

    Article  CAS  PubMed  Google Scholar 

  • Toh PSY, Jau MH, Yew SP, Abed RMM, Sudesh K (2008) Comparison of polyhydroxyalkanoates biosynthesis, mobilization and the effects on cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J Biosci 19:21–38

    Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Steinbüchel A (1995) Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polym Degrad 3:169–175

    Article  CAS  Google Scholar 

  • Verma NK, Khanna SK, Kapila B (2007) Comprehensive chemistry XII, vol 1. Laxi Publications Pvt. Ltd., 113, Golden house, Daryaganj, New Delhi, India, pp 1581–1608

    Google Scholar 

  • Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis Inc., USA, pp 292–312

    Google Scholar 

  • Vona IA, Costanza JR, Cantor HA, Roberts WJ (1965) Manufacture of plastics, vol 1. Wiley, New York, pp 141–142

    Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    Article  CAS  PubMed  Google Scholar 

  • Ward AC, Rowley BI, Dawes EA (1977) Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in Ammonium-grown Azotobacter beijerinckii. J Gen Microbiol 102:61–68

    Article  CAS  Google Scholar 

  • Wilson JT, McNabb JF, Cochran JW et al (1985) Influence of microbial adaptation on the fate of organic pollutants in ground water. Environ Toxicol Chem 4:721–726

    CAS  Google Scholar 

  • Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  CAS  PubMed  Google Scholar 

  • Xie WP, Chen GQ (2008) Production and characterization of terpolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38:384–389

    Article  CAS  Google Scholar 

  • Yang JE, Choi YJ, Lee SJ et al (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104

    Article  CAS  PubMed  Google Scholar 

  • Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Luo RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules. doi:10.1021/bm801424e

    Google Scholar 

  • Zheng LZ, Li Z, Tian HL, Li M, Chen GQ (2005) Molecular cloning and functional analysis of (R)3-hydroxyacyl-acyl carrier protein:coenzyme A transacylase from Pseudomonas mendocina LZ. FEMS Microbiol Lett 252:299–307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sharma, L., Srivastava, J.K., Singh, A.K. (2016). Biodegradable Polyhydroxyalkanoate Thermoplastics Substituting Xenobiotic Plastics: A Way Forward for Sustainable Environment. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_14

Download citation

Publish with us

Policies and ethics