Skip to main content

Environmental Xenobiotics and Its Effects on Natural Ecosystem

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Environmental contamination by xenobiotics is a worldwide phenomenon as a result of human activities resulting from rise in urbanization and population growth. There are numerous sources of xenobiotics ranging from pharmaceuticals to agriculture. Recently, the demand for pharmaceuticals versus population growth has placed the public at risk. In addition, the making of unlawful drugs has led to the discharge of harmful carcinogens into the water system. The release of these harmful pollutants results in numerous short- and long-term effects to the natural ecosystem. This review takes a look at the sources of xenobiotics, their fate in the ecosystem and means of action with possible prevention methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bjorkman D (1998) Nonsteroidal anti-inflammatory drug associated toxicity of the liver, lower gastrointestinal tract, and esophagus. Am J Med 105(5, Suppl. 1):7S–21S

    Google Scholar 

  • Bonjoko B (2014) Environmental pharmacology: an overview. In: Pharmacology and therapeutics (Monograph on the internet). Intech, pp 133–178. Available from: http://www.intechopen.com/books/pharmacology-andtherapeutics/environmental-pharmacology-an-overview

  • Brooks BW, Chambliss CK, Stanley JK et al (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24(2):464–469

    Article  CAS  PubMed  Google Scholar 

  • Cajaraville MP, Cancio M, Ibabe A, Orbea A (2003) Peroxisome proliferation as a biomarker in environmental pollution assessment. Microsc Res Tech 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Cuklev F, Fick J, Cvijovic M et al (2012) Does ketoprofen or diclofenac pose the lowest risk to fish? J Hazard Mater 229–230:100–106

    Article  PubMed  Google Scholar 

  • Debelle FD, Wanherghem JL, Nortier JL (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int 74:154–169

    Article  Google Scholar 

  • Doggrell SA (1990) The membrane stabilizing and beta1- adrenoceptor blocking activity of (+) – and (−) -propranolol on the rat left atria. Gen Pharmacol Vasc Sci 21(5):677–680

    Article  CAS  Google Scholar 

  • Drury R, Scott J, Rosi – Marshall EJ, Kelly JJ (2013) Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 47(15):8923–8930

    CAS  PubMed  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  PubMed  Google Scholar 

  • Fetzner S (2002) Biodegradation of xenobiotics. In Encyclopedia of Life Support Systems (EOLSS) Publishers, developed under the Auspices of the UNESCO. Biotechnology, Edited by Doelle and Da Silva. EOLSS Oxfor, U.K. p 32

    Google Scholar 

  • Fick J, Lindberg RH, Tysklind M, Larsson DG (2010) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58(3):516–523

    Article  CAS  PubMed  Google Scholar 

  • Garrison AW, Pope JD, Allen FR (1976) Analysis of organic compounds in domestic wastewater. In: Keith CH (ed) Identification and analysis of organic pollutants in water. Ann Arbor Science, Michigan, pp 517–566

    Google Scholar 

  • Grollman AP, Shibutani S, Moriya M, Muller F, Wu L, Moil U, Swzulai N, Fernandes A, Rosenqiust T, Medeverec Z, Jakovinak BB, Slade N, Turesky RJ, Goodenough AK, Rieger R, Nukelic M, Jelakovic B (2007) Aristolochic acid and the etiology of endemic. (Balkan) nephropathy. Proc Natl Acad Sci U S A 104:12129–12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross B, Montgomery-Brown J, Naumann A, Reinhard M (2004) Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environ Toxicol Chem 23(9):2074–2083

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (1997) Role of cytochrome p450 enzymes in drug – drug interaction. Adv Pharmacol 47:7–35

    Article  Google Scholar 

  • Gunnarsson L, Kristiannsson E, Rutgersson C, Sturve J, Fick J, Forlin L, Larsson DGJ (2009) Pharmaceutical industry effluent diluted 1:500 affects global gene expression, cytochrome 1A activity and plasma phosphate in fish. Environ Toxicol Chem 28(12):2639–2647

    Article  CAS  PubMed  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1/2):5–17

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LR, D’ Argenio DA, MacCoss MJ et al (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436(7054):1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Holland W, Morrison T, Chang Y et al (2004) Metformin (glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase. Biochem Pharmacol 67(11):2081–2091

    Article  CAS  PubMed  Google Scholar 

  • IARC (2012) IARC working group on the evaluation of carcinogenic risks to humans; pharmeceuticals. Volume 100A. A review of human carcinogens. IARC Monogr Eval Carcinog Risks Num 100:101–401

    Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM et al (2005) Microbial diversity: application of micro-organisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2001) Human pharmaceuticals in the aquatic environment. Environ Technol 22:1383–1394

    Article  CAS  PubMed  Google Scholar 

  • Karatan E, Watrick P (2009) Signals, regulatory networks and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kid KA, Blanchfield PJ, Mills KH et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104(21):8897–8901

    Article  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Landrum PF, Robbins JA (1990) Bioavailability of sediment-associated contaminants to benthic invertebrates. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publishers Inc, Chelsea

    Google Scholar 

  • Le Page Y, Vosges M, Servil A, Brown F, Kah O (2011) Neuroendocrine effects of endocrine disruptors in teleost fish. J Toxicol Environ Health B Crit Rev 14(5–7):370–386

    Article  PubMed  Google Scholar 

  • Lee II H (1992) Models, muddles, and mud: predicting bioaccumulation of sediment-associated pollutants. In: Burton Jr. GA (ed) Sediment toxicity assessment. Chelsea

    Google Scholar 

  • Maenpaa KA (2007) The toxicity of xenobiotics in an aquatic environment: connecting body residues with adverse effects. PhD Dissertation, University of Joensuu, Finland

    Google Scholar 

  • Meeker JD (2012) Expensive to environmental endocrine disruptions and child development. Arch Pediatr Adolesc Med 166(10):952–958

    Article  PubMed  Google Scholar 

  • Moriya M, Slade N, Brder B, Medverec Z et al (2014) TP53 mutational signature for aristolochic acid: an environmental carcinogen. Int J Cancer 129:1532–1536

    Article  Google Scholar 

  • Newman MC (1998) Fundamentals of ecotoxicology. Sleeping Bear/Ann Arbor Press, Chelsea

    Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287

    Article  CAS  PubMed  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Ritz SA (2010) Air pollution as a potential contributor to the ‘epidemic’ of autoimmune disease. Med Hypothesis 74(1):110–117

    Article  CAS  Google Scholar 

  • Rosi-Marshall E (2013) Streams stressed by pharmaceutical pollution. www. Environmental change. nd. edu/events/2 Last visited 10-08-2013

    Google Scholar 

  • Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. J Chromatogr A 938(1/2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Schmeiser HH, Shoepe KB, Wiessler M (1998) DNA adduct formation of aristolochic acid I and II in vitro and in vivo. Carcinogenesis 9:297–303

    Article  Google Scholar 

  • Shanmugan G, Sampath S, Selvaraj KK et al (2013) Non-steroidal anti inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931

    Article  Google Scholar 

  • Sikandar A, Shehzadi K, Arshad Q, Munir K (2013) Phytoremediation: an analytical technique for the assessment of biodegradation of organic xenobiotic pollutants: a review. Int J Sci Res 4(2):2250–2253

    Google Scholar 

  • Streit B (1992) Bioaccumulation processes in ecosystems. Experientia 48:955–970

    Article  CAS  PubMed  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • van derVen K, Van Dongen W, Maes BUW et al (2004) Determination of diazepam in aquatic samples by capillary liquid chromatography–electrospray tandem mass spectrometry. Chemosphere 57(8):967–973

    Article  Google Scholar 

  • Wiegel S, Aulinger A, Brockmeyer R et al (2004) Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 57(2):107–126

    Article  CAS  PubMed  Google Scholar 

  • Wong MK, Tan P, Wee YC (1993) Heavy metals in some Chinese herbal plants. Biol Trace Elem Res 36(2):135–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author Katheem Kiyasudeen acknowledges University Sains Malaysia (USM) for funding and research facilities via RUI grant (Grant Number: 1001/PTEKIND/811254) and USM fellowship-2015 award for academic support’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Embrandiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Embrandiri, A., Kiyasudeen, S.K., Rupani, P.F., Ibrahim, M.H. (2016). Environmental Xenobiotics and Its Effects on Natural Ecosystem. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_1

Download citation

Publish with us

Policies and ethics