Public Policy Simulation Based on Online Social Network: Case Study of Chinese Circuit Breaker Mechanism

  • Yuan Huang
  • Yijun Liu
  • Qianqian LiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 660)


This paper presents a public policy simulation method established based on the structure and function of online social networks. The simulation technique draws on Markov switching methodology and includes data collection and parameter extraction. Two parameters are crucial to operating the simulation: the initial attitude matrix and the attitude transition probability matrix. Simulation results are obtained via iterative operation of these matrices until reaching equilibrium. This kind of processing method provides a good way to combine the simulation analysis and empirical situation. A case study on the hotly debated “circuit breaker mechanism” policy was conducted to verify the effectiveness of the proposed method. The simulation results suggested that the circuit breaker mechanism is infeasible; the fact that the policy was indeed formally terminated confirms the effectiveness of the simulation method.


Public policy simulation Sentiment classification Markov switching method 



Funds for this research was provided by the National Natural Science Foundation of China (NSFC)71403262; 71573247; 91024010; 91324009; 71503246.


  1. 1.
    Bronnenberg, B.J., Rossi, P.E., Vilcassim, N.J.: Structural modeling and policy simulation. J. Mark. Res. 42, 22–26 (2005). doi: 10.1509/jmkr. CrossRefGoogle Scholar
  2. 2.
    Parks, P.J., Kramer, R.A.: A policy simulation of the wetlands reserve program. J. Environ. Econ. Manag. 28, 223–240 (1995). doi: 10.1006/jeem.1995.1015 CrossRefGoogle Scholar
  3. 3.
    Heshmati, A., Lenz, V.F.C.: Policy simulation of firms cooperation in innovation. Res. Eval. 24(3), 293 (2015)CrossRefGoogle Scholar
  4. 4.
    Yuan, Y., Na, L., Shi, M., (2015) A multi-regional CGE model, its application in low carbon policy simulation in China. In: IEEE/Wic/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 36–39. IEEE press, New York, 2015.  10.1109/WI-IAT.2015.18
  5. 5.
    Leros, A., Andreatos, A.: Using Xcos as a teaching tool in a simulation course. In: 6th International Conference on Communications and Information Technology, and Proceedings of the 3rd World Conference on Education and Educational Technologies, pp. 121–126. WSEAS, Wisconsin (2012)Google Scholar
  6. 6.
    Buckle, R.A., Haugh, D., Thomson, P.: Markov switching models for GDP growth in a small open economy. J. Bus. Cycle Meas. Anal. 2004, 13 (2004). doi: 10.1787/17293626 Google Scholar
  7. 7.
    Malyshkina, N.V., Mannering, F.L., Tarko, A.P.: Markov switching negative binomial models: an application to vehicle accident frequencies. Accid. Anal. Prev. 41, 217–226 (2009). doi: 10.1016/j.aap.2008.11.001 CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Nikolsko-Rzhevskyy, A., Prodan, R.: Markov switching and exchange rate predictability. Int. J. Forecast. 28, 353–365 (2012). doi: 10.1016/j.ijforecast.2011.04.007 CrossRefGoogle Scholar
  10. 10.
    Nanduri, V., Saavedra-Antolnez, I.: A competitive Markov decision process model for the energy-water-climate change nexus. Appl. Energy 111, 186–198 (2013). doi: 10.1016/j.apenergy.2013.04.033 CrossRefGoogle Scholar
  11. 11.
    Bennett, C.C., Hauser, K.: Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif. Intell. Med. 57, 9–19 (2013). doi: 10.1016/j.artmed.2012.12.003 CrossRefGoogle Scholar
  12. 12.
    Liang, Z.L., Jia, X.F.: Theory and Practice of Decision Support System. Tsinghua University Press, Beijing (2014)Google Scholar
  13. 13.
    Mitchell, L., Frank, M.R., Harris, K.D., et al.: The geography of happiness: connecting twitter sentiment and expression, demographics, and objective characteristics of place. Plos One 8, e64417 (2013). doi: 10.1371/journal.pone.0064417 CrossRefGoogle Scholar
  14. 14.
    Niu, W.Y.: Three principles of optimizing social governance structure. Bull. Chin. Acad. Sci. 30, 61–70 (2015). doi: 10.16418/j.issn.1000-3045.2015.01.009 Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.University of Chinese Academy of SciencesBeijingChina
  2. 2.Institute of Policy and Management, Chinese Academy of SciencesBeijingChina

Personalised recommendations