Skip to main content

Team Knowledge Formation and Evolution Based on Computational Experiment

  • Conference paper
  • First Online:
Knowledge and Systems Sciences (KSS 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 660))

Included in the following conference series:

  • 660 Accesses

Abstract

In knowledge intensive team, team knowledge referred to team-level knowledge emerged from knowledge interaction among members, is vital resources for enterprise innovation. So how the team knowledge forms and evolves is what this paper concerns. Firstly knowledge interaction process is described according to member’s psychological and behavioral activities, then team knowledge emerging process in knowledge interaction is depicted based on members’ memories, after that a task driven-artificial knowledge intensive team is established with computational experiment method by simulating knowledge interactions to achieve team knowledge formation and evolution. According to the experiments, the influences of team scale, team knowledge space, member’s knowledge learning ability, knowledge interaction willingness and initial knowledge state on team knowledge formation and evolution are analyzed. The experiments results can provide reliable decision supports for managers to use team knowledge to improve enterprise innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, Y., Jackson, S.E.: The internal and external networks of knowledge intensive team. J. Manage. 39, 442–468 (2013). doi:10.1177/0149206310394186

    Google Scholar 

  2. Lee, J.Y., Bachrach, D.G., Lewis, K.: Social network ties, transactive memory and performance in groups. Organ. Sci. 25(3), 951–967 (2014). doi:10.1287/orsc.2013.0884

    Article  Google Scholar 

  3. Sikorski, E.G., Johnson, T.E., Ruscher, P.E.: Team knowledge sharing intervention effects on team shared mental models and student performance in an undergraduate science course. J. Sci. Educ. Technol. 21(6), 641–651 (2012). doi:10.1007/s10956-011-9353-9

    Article  Google Scholar 

  4. Wildman, J.L., Thayer, A.L., Pavlas, D.: Team knowledge research: emerging trends and critical need. Hum. Factors. J. Hum. Factors Ergon. Soc. 54(1), 84–111 (2012). doi:10.1177/0018720811425365

    Article  Google Scholar 

  5. Kozlowski, S.W.Y., Ilgen, D.R.: Enhancing the effectiveness of work groups and teams. Psychol. Sci. Public Interest 7(3), 77–124 (2006). doi:10.1111/j.1529-1006.2006.00030.x

    Google Scholar 

  6. Gang, Z.H., Jie, L.: Team mental models and transactive memory system: two ways of team knowledge representation. J. Dialect. Nat. 34(1), 81–88 (2012)

    Google Scholar 

  7. Woolley, A.W., Malone, T.W.: Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010). doi:10.1126/science.1193147

    Article  Google Scholar 

  8. Dechurch, L.A., Mesmer-Magnus, J.R.: The cognitive underpinnings of effective teamwork: a meta-analysis. J. Appl. Psychol. 95(1), 32–53 (2010). doi:10.1037/a0017328

    Article  Google Scholar 

  9. Johnson, T.E., Top, E., Yukselturk, E.: Team shared mental model as a contributing factor to team performance and students’ course satisfaction in blended courses. Comput. Hum. Behav. 27(6), 2330–2338 (2011). doi:10.1016/j.chb2011.07.012

    Article  Google Scholar 

  10. Mancuso, V.F., Mcneese, M.D.: Effects of Integrated and Differentiated Team Knowledge Structures on Distributed Team Cognition. In: 56th Annual Meeting of the Human Factors and Ergonomics Society, pp. 388–392. SAGE Press, Boston (2012). doi:10.1177/1071181312561088

    Google Scholar 

  11. Nrico, R., Nchez-Manzanares, M.S., Gil, F., Gibson, C.: Team implicit coordination process: a team knowledge-based approach. Acad. Manage. Rev. 33(1), 163–184 (2008). doi:10.5465/AMR.2008.27751276

    Article  Google Scholar 

  12. Liao, J., O’Brien, A.T., Jimmieson, N.L.: Predicting transactive memory system in multidisciplinary teams: the interplay between team and professional identities. J. Bus. Res. 68(5), 965–977 (2015). doi:10.1016/j.jbusres.2014.09.024

    Article  Google Scholar 

  13. Chiang, Y.H., Shih, H.A., Hsu, C.C.: High commitment work system, transactive memory system, and new product performance. J. Bus. Res. 67(4), 631–640 (2014). doi:10.1016/j.jbusres.2013.01.022

    Article  Google Scholar 

  14. Lv, Y., Zhang, X., Kang, W.: Managing emergency traffic evacuation with a partially random destination allocation strategy: a computational experiment based optimization approach. IEEE. Trans. Intell. Transp. Syst. 16(4), 2182–2192 (2015). doi:10.1109/TITS.2015.2399852

    Article  Google Scholar 

  15. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated firstorder method for convex optimization. Comput. Optim. Appl. 64(1), 1–43 (2016). doi:10.1007/s10589-015-9802-0

    Article  MathSciNet  Google Scholar 

  16. Poppenborg, J., Knust, S.: Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resourse transfers. Eur. J. Comput. Optim. 4, 1–32 (2016). doi:10.1007/s13675-015-0061-8

    Article  MathSciNet  Google Scholar 

  17. Long, Q.: An agent-based distributed computational experiment framework for virtual supply chain network development. Expert. Syst. Appl. 41(9), 4094–4112 (2014). doi:10.1016/j.eswa.2014.01.001

    Article  Google Scholar 

  18. Kozlowski, S.W.J., Klein, K.J.: A Multilevel Approach to Theory and Research in Orgaizations: Contextual, Temporal and Emerget Processes. Jossey-Bass, San Francisco (2000)

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China under Grant No. 71471028.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutong Li or Yanzhong Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, Y., Dang, Y. (2016). Team Knowledge Formation and Evolution Based on Computational Experiment. In: Chen, J., Nakamori, Y., Yue, W., Tang, X. (eds) Knowledge and Systems Sciences. KSS 2016. Communications in Computer and Information Science, vol 660. Springer, Singapore. https://doi.org/10.1007/978-981-10-2857-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2857-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2856-4

  • Online ISBN: 978-981-10-2857-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics