Team Knowledge Formation and Evolution Based on Computational Experiment

  • Yutong LiEmail author
  • Yanzhong DangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 660)


In knowledge intensive team, team knowledge referred to team-level knowledge emerged from knowledge interaction among members, is vital resources for enterprise innovation. So how the team knowledge forms and evolves is what this paper concerns. Firstly knowledge interaction process is described according to member’s psychological and behavioral activities, then team knowledge emerging process in knowledge interaction is depicted based on members’ memories, after that a task driven-artificial knowledge intensive team is established with computational experiment method by simulating knowledge interactions to achieve team knowledge formation and evolution. According to the experiments, the influences of team scale, team knowledge space, member’s knowledge learning ability, knowledge interaction willingness and initial knowledge state on team knowledge formation and evolution are analyzed. The experiments results can provide reliable decision supports for managers to use team knowledge to improve enterprise innovation.


Team knowledge Formation and evolution Knowledge intensive team Computational experiment 



This work is partly supported by the National Natural Science Foundation of China under Grant No. 71471028.


  1. 1.
    Chung, Y., Jackson, S.E.: The internal and external networks of knowledge intensive team. J. Manage. 39, 442–468 (2013). doi: 10.1177/0149206310394186 Google Scholar
  2. 2.
    Lee, J.Y., Bachrach, D.G., Lewis, K.: Social network ties, transactive memory and performance in groups. Organ. Sci. 25(3), 951–967 (2014). doi: 10.1287/orsc.2013.0884 CrossRefGoogle Scholar
  3. 3.
    Sikorski, E.G., Johnson, T.E., Ruscher, P.E.: Team knowledge sharing intervention effects on team shared mental models and student performance in an undergraduate science course. J. Sci. Educ. Technol. 21(6), 641–651 (2012). doi: 10.1007/s10956-011-9353-9 CrossRefGoogle Scholar
  4. 4.
    Wildman, J.L., Thayer, A.L., Pavlas, D.: Team knowledge research: emerging trends and critical need. Hum. Factors. J. Hum. Factors Ergon. Soc. 54(1), 84–111 (2012). doi: 10.1177/0018720811425365 CrossRefGoogle Scholar
  5. 5.
    Kozlowski, S.W.Y., Ilgen, D.R.: Enhancing the effectiveness of work groups and teams. Psychol. Sci. Public Interest 7(3), 77–124 (2006). doi: 10.1111/j.1529-1006.2006.00030.x Google Scholar
  6. 6.
    Gang, Z.H., Jie, L.: Team mental models and transactive memory system: two ways of team knowledge representation. J. Dialect. Nat. 34(1), 81–88 (2012)Google Scholar
  7. 7.
    Woolley, A.W., Malone, T.W.: Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010). doi: 10.1126/science.1193147 CrossRefGoogle Scholar
  8. 8.
    Dechurch, L.A., Mesmer-Magnus, J.R.: The cognitive underpinnings of effective teamwork: a meta-analysis. J. Appl. Psychol. 95(1), 32–53 (2010). doi: 10.1037/a0017328 CrossRefGoogle Scholar
  9. 9.
    Johnson, T.E., Top, E., Yukselturk, E.: Team shared mental model as a contributing factor to team performance and students’ course satisfaction in blended courses. Comput. Hum. Behav. 27(6), 2330–2338 (2011). doi: 10.1016/j.chb2011.07.012 CrossRefGoogle Scholar
  10. 10.
    Mancuso, V.F., Mcneese, M.D.: Effects of Integrated and Differentiated Team Knowledge Structures on Distributed Team Cognition. In: 56th Annual Meeting of the Human Factors and Ergonomics Society, pp. 388–392. SAGE Press, Boston (2012). doi: 10.1177/1071181312561088
  11. 11.
    Nrico, R., Nchez-Manzanares, M.S., Gil, F., Gibson, C.: Team implicit coordination process: a team knowledge-based approach. Acad. Manage. Rev. 33(1), 163–184 (2008). doi: 10.5465/AMR.2008.27751276 CrossRefGoogle Scholar
  12. 12.
    Liao, J., O’Brien, A.T., Jimmieson, N.L.: Predicting transactive memory system in multidisciplinary teams: the interplay between team and professional identities. J. Bus. Res. 68(5), 965–977 (2015). doi: 10.1016/j.jbusres.2014.09.024 CrossRefGoogle Scholar
  13. 13.
    Chiang, Y.H., Shih, H.A., Hsu, C.C.: High commitment work system, transactive memory system, and new product performance. J. Bus. Res. 67(4), 631–640 (2014). doi: 10.1016/j.jbusres.2013.01.022 CrossRefGoogle Scholar
  14. 14.
    Lv, Y., Zhang, X., Kang, W.: Managing emergency traffic evacuation with a partially random destination allocation strategy: a computational experiment based optimization approach. IEEE. Trans. Intell. Transp. Syst. 16(4), 2182–2192 (2015). doi: 10.1109/TITS.2015.2399852 CrossRefGoogle Scholar
  15. 15.
    Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: An adaptive accelerated firstorder method for convex optimization. Comput. Optim. Appl. 64(1), 1–43 (2016). doi: 10.1007/s10589-015-9802-0 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Poppenborg, J., Knust, S.: Modeling and optimizing the evacuation of hospitals based on the MRCPSP with resourse transfers. Eur. J. Comput. Optim. 4, 1–32 (2016). doi: 10.1007/s13675-015-0061-8 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Long, Q.: An agent-based distributed computational experiment framework for virtual supply chain network development. Expert. Syst. Appl. 41(9), 4094–4112 (2014). doi: 10.1016/j.eswa.2014.01.001 CrossRefGoogle Scholar
  18. 18.
    Kozlowski, S.W.J., Klein, K.J.: A Multilevel Approach to Theory and Research in Orgaizations: Contextual, Temporal and Emerget Processes. Jossey-Bass, San Francisco (2000)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.School of PsychologyLiaoning Normal UniversityDalianChina
  2. 2.Institute of System EngineeringDalian University of TechnologyDalianChina

Personalised recommendations