Skip to main content

Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture

  • Chapter
  • First Online:
Plant-Microbe Interaction: An Approach to Sustainable Agriculture

Abstract

Raising industrial activities and agricultural practices as well as other human anthropogenic actions adds a significant amount of heavy metals in soil and water, resulting in degradation of the environment. Some examples of the environmental concern metals are nickel, copper, arsenic, lead, cadmium, cobalt, and zinc. Due to their nonbiodegradable nature, toxic heavy metals accumulate in the environment and therefore contaminate the food chain. The presence of these hazardous metals further than the threshold limit exhibits a critical threat to the human health and total environment. Different physical, chemical, and biological procedures have been applied for the remediation of contaminants from the environment. Bioremediation is the application of biological remedy for cleanup and or mitigation of contaminants from the environment. This process is a cost-effective and worthwhile method for removal of heavy metal-contaminated soil compared to physicochemical remediation techniques which are expensive and deleterious for soil properties. Phytoremediation is defined as the direct use of appropriate living plants for removal, degradation, or sequester of contaminants from environments (atmosphere, hydrosphere, and lithosphere). The efficiency of phytoremediation depends on many factors like plant biomass yield, plant tolerance to metal toxicity, and heavy metal solubility or mobilization in the soil.

The success of the phytoremediation process can be attained through developing the association of hyperaccumularor plant species with microorganisms like heavy metal-resistant plant growth-promoting rhizobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Article  Google Scholar 

  • Abbaszadeh-dahaji P, Savaghebi GR, Asadi-rahmani H, Rejali F, Farahbakhsh M, Moteshareh-zadeh B, Omidvari M, Lindstrom K (2012) Symbiotic effectiveness and plant growth promoting traits in some Rhizobium strains isolated from Phaseolus vulgaris L. Plant Growth Regul 68:361–370

    Article  CAS  Google Scholar 

  • Abdelatey LM, Khalil WK, Ali TH, Mahrous KF (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in egyptian soils. J Appl Sci Env San 6:201–211

    CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2016) Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis. Int J Phytoremediation 18(7):720–729

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2006) Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. J Plant Physiol Mol Biol 12:59–66

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Arora K, Sharma S, Monti A (2016) Bio-remediation of Pb and Cd polluted soils by switch grass: A case study in India. Int J Phytoremediation 18(7):704–709

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Tren Biotech 25(8):356–361

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Barrutia O, Garbisu C, Hernandez-Allica J, Garcıa-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 58:1710–1715

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bharti RP, Shri Vastava A, Soni N, Tiwari A, More S, Ram Choudhary J (2014) Phytoremediation of heavy metal toxicity and role of soil in rhizobacteria. Int J Sci Res Pub 4(1):1–5

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36(1):46–58

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut Focus 6:261–279

    Article  CAS  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Chaudhary K, Khan S (2015) Review: plant microbe-interaction in heavy metal contaminated soils. Indian Res J Genet Biotech 7(2):235–240

    Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chirakkara RA, Reddy KR (2015) Plant species identification for phytoremediation of mixed contaminated soils. J Hazard Toxic Radioact Waste 19(4):1–10

    Article  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • DeBashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth promoting bacteria to reduce environmental degradation. A comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009a) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A (2007) The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere 68:345–353

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Biopriming of Salvia officinalis L. seed with plant growth promoting rhizobacteria (PGPRs) changes the invigoration and primary growth indices. J Biol Environ Sci 8:29–36

    Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk J Biol 37:350–360

    CAS  Google Scholar 

  • Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh DP (2016) Phytochemical variations and enhanced efficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chem Biodivers 13(3):319–330

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–487

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 267

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase producing soil bacteria. Eur J Plant Pathol 119(3):329–339

    Article  CAS  Google Scholar 

  • He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants Wiley, New York

    Google Scholar 

  • Ismande J (1998) Iron, sulfur and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103:139–144

    Article  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Asadi Rahmani H, Rasuli Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, Rehman S, Rha ES (2014) Role of Bacillus licheniformis in phytoremediationof nickel contaminated soil cultivated with rice. Int J Phytorem 16(6):554–571

    Article  CAS  Google Scholar 

  • Janmohammadi M, Bihamta M, Ghasemzadeh F (2013) Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes. Cercet Agron Moldova 46:49–67

    Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996–2002

    Article  Google Scholar 

  • Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ (2015) Effect of plant growth promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4(3):179–183

    Article  Google Scholar 

  • Khakipour N, Khavazi K, Mojallali H, Pazira E, Asadirahmani H (2008) Production of auxin hormone by fluorescent pseudomonads. Am Eurasian J Agric Environ Sci 4:687–692

    Google Scholar 

  • Khalid A, Arshad M, Zahir AA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375–388

    Article  Google Scholar 

  • Lambert M, Leven B, Green R (2000) New methods of cleaning up heavy metal in soils and water. Environmental science and technology briefs for citizens. Kansas State University, Manhattan

    Google Scholar 

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Article  CAS  PubMed  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1383–1392

    Article  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants under salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Over view of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants, Wiley, NewYork, pp 3–58

    Google Scholar 

  • Mishra V, Gupta A, Kaur P, Simranjeet S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18(7):704–709

    Article  Google Scholar 

  • Modirroosta S, Ardalan MM, Bayramzadeh V (2014) Impact of soil cadmium contamination on accumulation of cadmium and proline content of Pinus sylvestris L. Seedling Agric Sci Dev 3(2):167–172

    Google Scholar 

  • Motesharezadeh B, Savaghebi-Firoozabadi GR (2011) Study of the increase in phytoremediation efficiency in a nickel polluted soil by the usage of native bacteria: Bacillus safensis FO.036b and Micrococcus roseus M2. Caspian J Env Sci 9(2):133–143

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol l8:3795–3801

    Article  Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142

    Article  CAS  Google Scholar 

  • Petriccione M, Di Patre D, Ferrante P, Papa S, Bartoli G, Fioretto A, Scortichini M (2013) Effects of Pseudomonas fluorescens seed bioinoculation on heavy metal accumulation for Mirabilis jalapa phytoextraction in smelter-contaminated soil. Water Air Soil Pollut 224:1–17

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol l28:142–149

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezˇal K, Jürgens SG, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Cheng Z, Glick B (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:31–36

    Google Scholar 

  • Suthersan SS (1999) Phytoremediation: remediation engineering-design concepts. CRC Press LLC, Boca Raton

    Google Scholar 

  • Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ (2015) Diazotrophs assisted phytoremediation of heavy metals: a novel approach. Environ Sci Pollut Res 22:2505–2710

    Article  CAS  Google Scholar 

  • Vidyapith B, Rajasthan BT (2014) Effect of plant growth promoting rhizobacteria (PGPR) on plant growth and flouride (f) uptake by F hyperaccumulator plant prosopis juliflora. Int J Recent Sci Res 5(11):1995–1999

    Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wei SH, Teixeira da Silva JA, Zhou QX (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, deSouza MP, Norman T (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soil: a sources review of, chemistry, risks and best available strategies for bioremediation. ISRN Ecology 2011:20

    Article  Google Scholar 

  • Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in v-ti magnetite mine tailing soil from Panzhihua, China. Plos One 9(9):1–8

    Google Scholar 

  • Yu Y, Zhang Y, Zhang Q, Zhang X, Meng X, Lu Z (2015) Improvement of heavy metal resistant bacteria on phytoremediation of reclaimed land using coal gangue. J Residuals Sci Tech 12(1):105–109

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Abbaszadeh-Dahaji, P., Omidvari, M., Ghorbanpour, M. (2016). Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture. In: Choudhary, D., Varma, A., Tuteja, N. (eds) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_9

Download citation

Publish with us

Policies and ethics