Mycorrhizosphere: The Extended Rhizosphere and Its Significance

  • P. Priyadharsini
  • K. Rojamala
  • R. Koshila Ravi
  • R. Muthuraja
  • K. Nagaraj
  • T. MuthukumarEmail author


Plant roots influence soil through the release of carbon-rich exudates and rhizodeposits. The soil region influenced by plant roots is termed as rhizosphere. A unique community of microorganisms thrives in the rhizosphere whose activities enable plants to acquire various resources from soil for their growth and survival. Most plants in natural and agricultural ecosystems are associated with mycorrhizal fungi, which act as interlink between two different environments, the root and the soil. Mycorrhizal fungi play an important role in plant uptake of nutrients and protecting plants against various abiotic and biotic stresses. Like roots, mycorrhizal fungal hyphae also release exudates containing carbon into the surrounding soil, the hyphosphere that contributes to the formation of microbial communities and aggregation of soil particles. The soil region influenced by the mycorrhizal ro ots is the mycorrhizosphere. A wide range of microorganisms like bacteria, fungi, protozoa, nematodes, arthropods, etc., inhabit the mycorrhizosphere. These microorganisms interact with each other and with the plant system either directly or indirectly. The activities in the mycorrhizosphere include stimulation in the activities and populations of microorganisms, changes in pH, nutrient release from organic matter and nutrient cycling, suppression of plant pathogens, mycorrhizal formation, and changes in soil structure. An understanding of the functional diversity of microorganisms inhabiting the mycorrhizosphere is necessary to optimize soil microbial technology for the benefit of plant growth and health. This chapter describes the concept of rhizosphere, hyphosphere, and mycorrhizosphere and the various activities in these regions.


Microbial Community Microbial Biomass Arbuscular Mycorrhizal Mycorrhizal Fungus Root Exudate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbas-Zadeh PN, Saleh-Rastin H, Asadi-Rahmani K, Khavazi A, Soltani AR, Nejati S, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288CrossRefGoogle Scholar
  2. Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409CrossRefGoogle Scholar
  3. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929PubMedCrossRefGoogle Scholar
  4. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–81PubMedCrossRefGoogle Scholar
  5. Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008–1014CrossRefGoogle Scholar
  6. Amora-Lazcano E, Vázquez MM, Azcón R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65–70CrossRefGoogle Scholar
  7. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  8. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96CrossRefGoogle Scholar
  9. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  10. Ashraf M, Hasnain S, Berge O, Mahamood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt-stress. Biol Fertil Soils 40:157–162Google Scholar
  11. Aspray TJ, Jones EE, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25–33PubMedCrossRefGoogle Scholar
  12. Azaizeh HA, Marschner A, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327CrossRefGoogle Scholar
  13. Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644CrossRefGoogle Scholar
  14. Azcon-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 25:372–396Google Scholar
  15. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  16. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Suiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017PubMedPubMedCentralCrossRefGoogle Scholar
  17. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98PubMedCrossRefGoogle Scholar
  18. Bagyaraj DJ (1984) Biological interactions with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, pp 132–153Google Scholar
  19. Bai CM, He XL, Tang HL, Shan BQ, Zhao LL (2009) Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biol Biochem 41:941–947CrossRefGoogle Scholar
  20. Bais H, Weir PTL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–66PubMedCrossRefGoogle Scholar
  21. Bakhtiar Y, Yahya S, Sumaryono W, Sinaga MS, Budi SW, Tajuddin T (2010) Isolation and identification of mycorrhizosphere bacteria and their antagonistic effects towards Ganoderma boninense in vitro. Microbiol Indones 4:96–102CrossRefGoogle Scholar
  22. Balandreau J, Knowles R (1978) The rhizosphere. In: Dommerques YR, Krupa SV (eds) Interactions between non-pathogenic soil microorganisms and plants. Elsevier, Amsterdam/Oxford/New York, pp 243–268CrossRefGoogle Scholar
  23. Bansal RK, Bajaj A (2003) Effect of volatile fatty acids on embryogenesis and hatching of Meloidogyne incognita eggs. Nematol Mediterr 31:135–140Google Scholar
  24. Bansal RK, Dahiya RS, Narula N, Jain RK (2005) Management of Meloidogyne incognita in cotton, using strains of the bacterium Gluconacetobacter diazotrophicus. Nematol Mediterr 33:101–105Google Scholar
  25. Banuelos J, Alarcón A, Larsen J, Cruz-Sánchez S, Trejo D (2014) Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. J Soil Sci Plant Nutr 14:63–74Google Scholar
  26. Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Toutant JP, Balazs E, Galante E, Lynch JM, Schepers JS, Werner D, Werry PA (eds) Biological resource management: connecting science and policy. INRA, Springer, Berlin, pp 110–125Google Scholar
  27. Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  28. Barea JM, Pozo MJ, Lopez-Raez JA, Aroca R, Ruiz-Lozano JM, Ferrol N, Azcon R, Azcon-Aguilar C (2013) Arbuscular mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. In: Rodelas B, González-López J (eds) Beneficial plant-microbial interactions: ecology and applications. CRC Press, Boca Raton, pp 353–387CrossRefGoogle Scholar
  29. Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen ‐activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953PubMedPubMedCentralCrossRefGoogle Scholar
  30. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495PubMedCrossRefGoogle Scholar
  31. Bending G (2007) What are the mechanisms and specificity of mycorrhization helper bacteria? New Phytol 174:707–710PubMedCrossRefGoogle Scholar
  32. Bending GD, Aspray TJ, Whipps JM (2006) Significance of microbial interactions in the mycorrhizosphere. Adv Appl Microbiol 60:97–132PubMedCrossRefGoogle Scholar
  33. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627PubMedCrossRefGoogle Scholar
  34. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Barbara PD, Schulz JE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin/Heidelberg, pp 53–69CrossRefGoogle Scholar
  35. Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173CrossRefGoogle Scholar
  36. Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117–131CrossRefGoogle Scholar
  37. Bharadwaj DP, Lundquist P, Alstrom S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501CrossRefGoogle Scholar
  38. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14:255–260PubMedCrossRefGoogle Scholar
  39. Bonfante P, Anca IA (2005) Plants, mycorrhizal fungi and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383CrossRefGoogle Scholar
  40. Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631CrossRefGoogle Scholar
  41. Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbial partners in the rhizosphere: interactions between Norway Spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Appl Soil Ecol 18:193–204CrossRefGoogle Scholar
  42. Bulgarelli D, Rott M, Schlaeppi K, Themaat E Ver Loren van, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95Google Scholar
  43. Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110PubMedCrossRefGoogle Scholar
  44. Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592PubMedCrossRefGoogle Scholar
  45. Cardon ZG, Whitbeck JK (2007) The rhizosphere: an ecological perspective. Elsevier/Academic Press, New YorkGoogle Scholar
  46. Cavagnaro TR, Smith FA, Ayling SM, Smith SE (2003) Growth and phosphorus nutrition of a Paris type arbuscular mycorrhizal symbiosis. New Phytol 157:127–134CrossRefGoogle Scholar
  47. Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E et al (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164PubMedCrossRefGoogle Scholar
  48. Chakraborty A, Chakrabarti K, Chakraborty A, Ghosh S (2011) Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47:227–233CrossRefGoogle Scholar
  49. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedCrossRefGoogle Scholar
  50. Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  51. Cheng L, Booker F, Tu C, Burkey K, Zhou L, Shew H, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 2:1084–1087CrossRefGoogle Scholar
  52. Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol Fertil Soils 15:253–258CrossRefGoogle Scholar
  53. Costa R, Newton CM, Raquel G, Peixoto S, Rumjanek N, Berg G, Leda CS, Hagler M, Smalla K (2006) Diversity and antagonistic potential of Pseudomonas sp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol Biochem 38:2434–2447CrossRefGoogle Scholar
  54. Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1:52–57PubMedCrossRefGoogle Scholar
  55. De-la-Peña C, Badri D, Loyola-Vargas V (2012) Plant root secretions and their interactions with neighbors. In: Baluska F, Vivanco J (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 1–26CrossRefGoogle Scholar
  56. Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568Google Scholar
  57. Dohroo A, Sharma DR (2012) Role of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their helper bacteria on growth parameters and root rot of apple. WJST 2:35–38Google Scholar
  58. Dong Y, Zhu YG, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic contaminated soil. Environ Pollut 155:174–181PubMedCrossRefGoogle Scholar
  59. Drigo B, Pijl AS, Duyts H, Kielak A, Gamper HA, Houtekamer MJ et al (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942PubMedPubMedCentralCrossRefGoogle Scholar
  60. Duponnois R (2006) Bacteria helping mycorrhiza development. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Berlin, pp 297–310CrossRefGoogle Scholar
  61. Dutta S, Rani TS, Podile AR (2013) Root exudate-induced alterations in Bacillus cereus cell wall contributes to root colonization and plant growth promotion. PLoS ONE 8, e78369PubMedPubMedCentralCrossRefGoogle Scholar
  62. Egamberdieva D, Kamilova F, Validov SH, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedGoogle Scholar
  63. Ene M, Alexandru M (2008) Microscopical examination of plant reaction in case of infection with Trichoderma and mycorrhizal fungi. Rome Biotechnol Lett 13:13–19Google Scholar
  64. Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, Bucking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656PubMedCrossRefGoogle Scholar
  65. Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190PubMedCrossRefGoogle Scholar
  66. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  67. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Biol 59:1115–1126Google Scholar
  68. Foster RC, Rovira AD, Cock TW (1983) Ultrastructure of the root-soil interface. American Phytopathological Society, St. Paul, pp 5–11Google Scholar
  69. Frey-Klett P, Garbaye J, Tarkka M (2007) Tansley review: the mycorrhiza helper bacteria revisited. New Phytol 176:22–36PubMedCrossRefGoogle Scholar
  70. Frey-Klett P, Koele N, Turpault M-P, Hildebrand EE, Uroz S (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Chem 41:1935–1942CrossRefGoogle Scholar
  71. Fulekar MH, Pathak B (2015) Rhizosphere: an innovative approach for remediation of contaminants. IJSER 6:291–303Google Scholar
  72. Gahan J, Schmalenberger A (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl Soil Ecol 89:113–121CrossRefGoogle Scholar
  73. Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. Biocontrol 51:293–310CrossRefGoogle Scholar
  74. Giannakis N, Sanders FE (1990) Interactions between mycophagous nematodes mycorrhizal and other soil fungi. Agric Ecosyst Environ 29:163–167CrossRefGoogle Scholar
  75. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–39CrossRefGoogle Scholar
  76. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  77. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  78. Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862PubMedGoogle Scholar
  79. Haldar S, Sengupta S (2015) Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis. J Basic Microbiol 55:922–928PubMedCrossRefGoogle Scholar
  80. Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244PubMedCrossRefGoogle Scholar
  81. Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221Google Scholar
  82. Harrison M (1999) Biotrophic interfaces and nutrient transport in plant/fungal interfaces. J Exp Bot 50:1013–1022CrossRefGoogle Scholar
  83. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  85. Helman Y, Burdman S, Okon Y (2011) Plant growth promotion by rhizosphere bacteria through direct effects. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life form. Springer, Heidelberg/Berlin, pp 89–103Google Scholar
  86. Herdler S, Kreuzer K, Scheu S, Bonkowski M (2008) Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 40:660–668CrossRefGoogle Scholar
  87. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267PubMedCrossRefGoogle Scholar
  88. Hildebrandt U, Regvar MS, Bothe H (2007) Arbuscular mycorrhizal and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefGoogle Scholar
  89. Hiltner L (1904) Über neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78Google Scholar
  90. Hinsinger P, Bengough A, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  91. Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273CrossRefGoogle Scholar
  92. Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503CrossRefGoogle Scholar
  93. Hooker JE, Piatti P, Cheshire MV, Watson CS (2007) Polysaccharides and monosaccharides in the hyphosphere of the arbuscular mycorrhizal fungi Glomus E3 and Glomus tenue. Soil Biol Biochem 39:680–683CrossRefGoogle Scholar
  94. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  95. Idris E, Iglesias D, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626PubMedCrossRefGoogle Scholar
  96. Idrise EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss T (2002) Extracellular phytase activity of Bacillus amyloliquefaciens F2B45 contributed to its plant growth promoting effect. Microbiology 148:2097–2109CrossRefGoogle Scholar
  97. Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71:166–173CrossRefGoogle Scholar
  98. Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83CrossRefGoogle Scholar
  99. Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Front Plant Sci 4:134PubMedPubMedCentralCrossRefGoogle Scholar
  100. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  101. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates that a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  102. Jones DL, Darrah PR (1993) Re-sorption of organic-compounds by roots of Zea mays L. and its consequences in the rhizosphere. 2. Experimental and model evidence for simultaneous exudation and re-sorption of soluble C compounds. Plant Soil 153:47–59CrossRefGoogle Scholar
  103. Jones D, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6CrossRefGoogle Scholar
  104. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  105. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551PubMedCrossRefGoogle Scholar
  106. Kang SC, Pandey P, Khillon R, Maheshwari DK (2008) Process of phosphate solubilization by Aspergillus sp PS104 in soil amended medium. J Environ Biol 29:743–746PubMedGoogle Scholar
  107. Kannan V, Surrendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164PubMedCrossRefGoogle Scholar
  108. Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Anti biot 59:801–803Google Scholar
  109. Kerry BR (2000) Rhizosphere interactions and exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441PubMedCrossRefGoogle Scholar
  110. Khan MW (ed) (1993) Mechanisms of interactions between nematodes and other plant pathogens. In: Nematodes-interactions. Chapman & Hall, London, pp 175–202Google Scholar
  111. Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61:64–68PubMedCrossRefGoogle Scholar
  112. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81Google Scholar
  113. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  114. Kloepper JN, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266PubMedCrossRefGoogle Scholar
  115. Koele N, Dickie IA, Blum GD, Gleason JD, de Graaf L (2014) Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Chem 69:63–70CrossRefGoogle Scholar
  116. Kohlmeier S, Smits THM, Ford R, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant degrading bacteria by fungi. Environ Sci Technol 39:4640–4646PubMedCrossRefGoogle Scholar
  117. Koller R, Scheu S, Bonkowski M, Robin C (2013) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol Biochem 65:204–210CrossRefGoogle Scholar
  118. Kourosh O, Khavazi K, Moezzi A, Rajali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116Google Scholar
  119. Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L). Soil Biol Biochem 38:1665–1672CrossRefGoogle Scholar
  120. Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396CrossRefGoogle Scholar
  121. Larsen J-LP, Nájera-Rincon M, González-Esquivel CE (2015) Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J Soil Sci Plant Nutr 15:449–463Google Scholar
  122. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224PubMedCrossRefGoogle Scholar
  123. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  124. Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field13CO2 pulse-labelling in an upland grassland. Appl Soil Ecol 33:152–175CrossRefGoogle Scholar
  125. Li P, Gong Z, Fan S, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L). Chemosphere 71:1593–1598PubMedCrossRefGoogle Scholar
  126. Li XG, Zhang TL, Wang XX, Hua K, Zhao L, Han ZM (2013) The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int J Biol Sci 9:164–173PubMedPubMedCentralCrossRefGoogle Scholar
  127. Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang K-Q (2015) Molecular mechanisms of nematode-nematophagus microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol 53:67–95PubMedCrossRefGoogle Scholar
  128. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  129. Linderman RG (1992) VA mycorrhizae and soil microbial interactions. In: Bethelenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication No. 54, Madison, WI, pp 45–70Google Scholar
  130. Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Press, New York, pp 345–366Google Scholar
  131. Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soil borne phytopathogens. Span J Agric Res 8:51–61CrossRefGoogle Scholar
  132. Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110PubMedCrossRefGoogle Scholar
  133. Lynch JM (1981) Promotion and inhibition of soil aggregate stabilization by micro-organisms. J Gen Microbiol 126(37):1–375Google Scholar
  134. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  135. Maksimov IV, Abizgildina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345CrossRefGoogle Scholar
  136. Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14:1140–1148PubMedCrossRefGoogle Scholar
  137. Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140PubMedCrossRefGoogle Scholar
  138. Mao XF, Hu F, Griffiths B, Chen XY, Liu MQ, Li HX (2007) Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects? Soil Biol Biochem 39:1816–1819CrossRefGoogle Scholar
  139. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889Google Scholar
  140. Marschner P, Crowley DE, Ieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302PubMedCrossRefGoogle Scholar
  141. Martinez-Morales LJ, Soto-Urzua L, Baca BE, Sanchez-Ahedo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173PubMedCrossRefGoogle Scholar
  142. Massenia Reis V, Regina dos Santos K, Teixeira K, Pedraza RO (2011) What is expected from the genus Azospirillum as a plant growth-promoting bacteria? In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heildelberg, pp 123–138CrossRefGoogle Scholar
  143. McNear DH (2013) The rhizosphere-roots, soil and everything in between. Nat Educ Knowl 4:1Google Scholar
  144. Mechri B, Manga AGB, Tekaya M, Attia F, Cheheb H, Meriem FB, Braham M, Boujnah D, Hammami M (2014) Changes in microbial communities and carbohydrate profiles induced by the mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea L.). Appl Soil Ecol 75:124–133CrossRefGoogle Scholar
  145. Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP (2015) The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytol 205:1167–1174Google Scholar
  146. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raajimakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefGoogle Scholar
  147. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663PubMedCrossRefGoogle Scholar
  148. Meyer SLF (2003) United States Department of Agriculture – Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes. Pest Manag Sci 59:665–670PubMedCrossRefGoogle Scholar
  149. Meyer RJ, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular arbuscular mycorrhizal fungi and plant growth promoting rhizobacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190CrossRefGoogle Scholar
  150. Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay CJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. Crop Science Society Soil Science Society of America, Madison, pp 29–44Google Scholar
  151. Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23CrossRefGoogle Scholar
  152. Minorsky PV (2008) On the inside. Plant Physiol 146:323–324PubMedCentralCrossRefGoogle Scholar
  153. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12:563–569PubMedGoogle Scholar
  154. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930PubMedCrossRefGoogle Scholar
  155. Moore D, Robson GD, Trinci APJ (2011) 21st century guidebook to fungi. Cambridge University Press, New YorkCrossRefGoogle Scholar
  156. Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 373–409Google Scholar
  157. Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedCrossRefGoogle Scholar
  158. Naumann M, Schüßler A, Bonfante P (2010) The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISMEJ 4:862–871CrossRefGoogle Scholar
  159. Nichols KA (2008) Indirect contributions of AM fungi and soil aggregation to plant growth and protection. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Berlin, pp 177–194CrossRefGoogle Scholar
  160. Nichols KA, Wright SF (2004) Contributions of soil fungi to organic matter in agricultural soils. In: Magdoff F, Weil R (eds) Functions and management of soil organic matter in agroecosystems. CRC Press, Boca Raton, pp 179–198Google Scholar
  161. Nihorembere V, Ongena M, Smargiass M (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337Google Scholar
  162. Okubara PA, Call DR, Wak YK, Skinner DZ (2010) Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. Biol Cont 55:118–125CrossRefGoogle Scholar
  163. Olsson PA, Baath E, Jakobsen I, Soderstrom B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28:463–470CrossRefGoogle Scholar
  164. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  165. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329PubMedPubMedCentralCrossRefGoogle Scholar
  166. Paulitz TC, Lindennan RG (1991) Mycorrhizal interactions with soil organisms. In: Aurora DK, Rai B, Mukerji KG, Knudsen G (eds) Handbook of applied mycology, soils and plants, vol 1. Marcel Dekker, New York, pp 77–129Google Scholar
  167. Peng AP, Liu J, Gao YZ, Chen ZY (2013) Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS ONE 8:e83054Google Scholar
  168. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefGoogle Scholar
  169. Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modeling the interplay between roots and soil. Vadose Zone J 6:269–281CrossRefGoogle Scholar
  170. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris, Lactarius rufus ectomycorrhizas and their effects on mycorrhizal formation in vitro. New Phytol 151:743–751CrossRefGoogle Scholar
  171. Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhizal- induced resistance. Curr Opin Plant Biol 4:393–398CrossRefGoogle Scholar
  172. Pozo MJ, Dumas-Gaudot E, Slezack S, Cordier C, Asselin A, Gianinazzi S, Gianinazzi-Pearson V, Azcón-aguilar C, Barea JM (1996) Induction of new chitinase isoforms in tomato roots during interactions with Glomus mosseae and/or Phytophthora nicotianae var parasitica. Agronomie 16:689–697CrossRefGoogle Scholar
  173. Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523Google Scholar
  174. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  175. Ramachandran K, Srinivasan V, Hamza S, Anadaraj M (2007) Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion on black pepper (Piper nigrum L.) cutting. Plant Soil Sci 102:325–331Google Scholar
  176. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae, their ecology and physiology. Academic Press, New York, pp 299–349Google Scholar
  177. Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122CrossRefGoogle Scholar
  178. Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Crop Soil Res 128:130–154Google Scholar
  179. Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424PubMedCrossRefGoogle Scholar
  180. Rezzonico F, Zala M, Keel C, Duffy B, Moenne-Loccoz Y, Defago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4- diacetylphloroglucinol really synonymous with higher plant protection. New Phytol 173:861–872PubMedCrossRefGoogle Scholar
  181. Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84:355–363CrossRefGoogle Scholar
  182. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  183. Rillig MC, Wright SF, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  184. Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular- mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293–299CrossRefGoogle Scholar
  185. Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia 49:251–259CrossRefGoogle Scholar
  186. Rillig MC, Caldwell BA, Wösten HAB, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry 85:25–44CrossRefGoogle Scholar
  187. Rønn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105PubMedPubMedCentralCrossRefGoogle Scholar
  188. Rovira AD (1969) Plant root exudates. Biol Rev 35:35–57Google Scholar
  189. Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microbiol Ecol 39:137–144CrossRefGoogle Scholar
  190. Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334Google Scholar
  191. Santoyo G, Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocont Sci Technol 22:855–872CrossRefGoogle Scholar
  192. Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303PubMedCrossRefGoogle Scholar
  193. Schouteden N, Waaele DD, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280PubMedPubMedCentralCrossRefGoogle Scholar
  194. Shehata HR, Lyons EM, Jordan KS, Raizada MN (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120:756–769PubMedCrossRefGoogle Scholar
  195. Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol Biochem 41:1341–1343CrossRefGoogle Scholar
  196. Simon A, Bindschedler S, Job D, Wick LY, Filippidou S, Kooli WM, Verrecchia EP, Junier P (2015) Exploiting the fungal highway: development of a novel tool for thein situ isolation of bacteria migrating along fungal mycelium. FEMS Microbiol Ecol 91:1–13Google Scholar
  197. Singh DP, Srivastava JS, Bahadur A, Singh UP, Singh SK (2004) Arbuscular mycorrhizal fungi induced biochemical changes in pea (Pisum sativum) and their effect on powdery mildew (Erysiphe pisi). J Plant Dis Protect 111:266–272Google Scholar
  198. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, CambridgeGoogle Scholar
  199. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250PubMedCrossRefGoogle Scholar
  200. Smith SE, Jakobsen I, Gronlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedPubMedCentralCrossRefGoogle Scholar
  201. Sood SG (2003) Chemotactic response of plant-growth promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227CrossRefGoogle Scholar
  202. Srivastava AK, Singh T, Jana TK, Arora DK (2001) Induced resistance and charcoal rot in Ciceri arietinum (chickpea) by Pseudomonas fluorescens. Can J Bot 79:787–795Google Scholar
  203. Starkey RL (1938) Some influences of the development of higher plants upon the microorganisms in the soil. VI. Microscopic examination of the rhizosphere. Soil Sci 45:207–249CrossRefGoogle Scholar
  204. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190CrossRefGoogle Scholar
  205. Subba Rao NS, Tilak KVBR, Singh CS (1985) Synergistic effect of VAM and Azospirillum brasilense on the growth of barley in pots. Soil Biol Biochem 17: 119–121Google Scholar
  206. Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay R (1999) Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 9:137–144CrossRefGoogle Scholar
  207. Tarkka M, Schrey S, Hampp R (2008) Plant associated micro-organisms. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York, pp 3–51CrossRefGoogle Scholar
  208. Tian B, Yang J, Zhang K-Q (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213PubMedCrossRefGoogle Scholar
  209. Tiberius B, Cătălin T (2011) Interrelations between the mycorrhizal systems and soil organisms. J Plant Dev 18:55–69Google Scholar
  210. Timonen S, Marschner P (2006) Mycorrhizosphere concept. In: Mukerji KG, Manoharachary C, Singh J (eds) Soil biology. Springer, Berlin, pp 155–172Google Scholar
  211. Timonen S, Christensen S, Ekelund F (2004) Distribution of protozoa in scots pine mycorrhizosphere. Soil Biol Biochem 36:1087–1093CrossRefGoogle Scholar
  212. Tisdall JM, Oades JM (1982) Organic matter and waterstable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  213. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304PubMedCrossRefGoogle Scholar
  214. Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412PubMedPubMedCentralGoogle Scholar
  215. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factors in the As hyperaccumulating fern Pteris vittata L. Chenosphere 65:74–81CrossRefGoogle Scholar
  216. van Aarle IM, Olsson PA, Soderstrom B (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155:173–182CrossRefGoogle Scholar
  217. Van der Heijden MGA, Bakker R, Verwaal J, Scheublin TR, Rutten M, van Logtestijn R et al (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187PubMedCrossRefGoogle Scholar
  218. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310PubMedCrossRefGoogle Scholar
  219. Van Elsas JD, Torsvik V, Hartmann A, Ovreås L, Jansson JK (2007) The bacteria and archaea in soil. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC Press, Boca Raton, pp 83–106Google Scholar
  220. Van Hulten M, Pelser M, Van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607PubMedPubMedCentralCrossRefGoogle Scholar
  221. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254CrossRefGoogle Scholar
  222. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  223. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711PubMedGoogle Scholar
  224. Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371PubMedCrossRefGoogle Scholar
  225. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174–189PubMedPubMedCentralCrossRefGoogle Scholar
  226. Wagg C, Jansa J, Schmid B, van der Heijden MGA (2011) Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett 14:1001–1009PubMedCrossRefGoogle Scholar
  227. Wamberg C, Christensen S, Jakobsen I, Muller AK, Sorensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357CrossRefGoogle Scholar
  228. Wardle DA (1992) A comparative assessment of factors which influence microbial growth carbon and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–358CrossRefGoogle Scholar
  229. Warmink JA, Van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: Is type III secretion involved? ISME J 2:887–900PubMedCrossRefGoogle Scholar
  230. Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2009) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201CrossRefGoogle Scholar
  231. Weston LA, Alsaadawi IS, Baerson SR (2013) Sorghum allelopathy: from ecosystem to molecule. J Chem Ecol 39:142–53PubMedCrossRefGoogle Scholar
  232. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  233. Wright SF (2000) A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi. Plant Soil 226:171–177CrossRefGoogle Scholar
  234. Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107CrossRefGoogle Scholar
  235. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar
  236. York LM, Carminati A, Mooney SJ, Ritz K, Bennett MJ (2016) The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. J Exp Bot. doi: 10.1093/jxb/erw108 Google Scholar
  237. Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–63PubMedGoogle Scholar
  238. Zamfirache M-M, Toma C (2000) Simbioza în lumea vie. Edit. Univ. Alexandru Ioan Cuza, Iaşi, pp 186–239Google Scholar
  239. Zarnea G (1994) Tratat de microbiologie generală, vol 5. Bucureşti: Edit. Academiei Române, pp 367–391Google Scholar
  240. Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. In: Sparks DL (ed) Advances in agronomy, vol 107. Academic Press, San Diego, pp 1–32Google Scholar
  241. Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183CrossRefGoogle Scholar
  242. Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable co-operation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • P. Priyadharsini
    • 1
  • K. Rojamala
    • 1
  • R. Koshila Ravi
    • 1
  • R. Muthuraja
    • 1
  • K. Nagaraj
    • 1
  • T. Muthukumar
    • 1
    Email author
  1. 1.Root and Soil Biology Laboratory, Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations