Advertisement

Microbial Ecology at Rhizosphere: Bioengineering and Future Prospective

  • Shyamalina Haldar
  • Sanghamitra SenguptaEmail author
Chapter

Abstract

Rhizosphere, the interface between soil and plant roots, is a chemically complex environment which supports the development and growth of diverse microbial communities. Studies in rhizosphere science have undoubtedly improved our ability to steer the knowledge into technological applications in agricultural industry, ecological engineering, and nature restoration. In this chapter we provide a holistic perception of rhizosphere functioning with a highlight on the ecological drivers that promote colonization of coherent functional groups of microorganisms influencing plant life through several direct and indirect mechanisms. We also discuss how the activities of the indigenous microbes from rhizosphere may be exploited toward developing profitable techniques or methods in sustainable agriculture, biotechnology, and environmental management. In this context, we emphasize on the need for high degree of innovation and active collaboration between basic research and technology development wings for the best use of the knowledge in order to meet the increasing global demand for food, fiber, and bioenergy.

Keywords

Arbuscular Mycorrhizal Fungus Genetically Modify Root Exudation Switch Grass Methyl Tertiary Butyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbas HK, Zablotowicz RM, Weaver MA, Shier WT, Bruns HA, Bellaloui N, Accinelli C, Abel CA (2013) Implications of Bt traits on mycotoxin contamination in maize: overview and recent experimental results in southern United States. J Agric Food Chem 61(48):11759–11770. doi: 10.1021/jf400754g PubMedCrossRefGoogle Scholar
  2. Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27(4):474–488. doi: 10.1016/j.biotechadv.2009.04.002S0734-9750(09)00052-4 [pii]PubMedCrossRefGoogle Scholar
  3. Adenle AA (2011) Response to issues on GM agriculture in Africa: are transgenic crops safe? BMC Res Notes 4:388. doi: 10.1186/1756-0500-4-3881756-0500-4-388 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18(3):117–127. doi:DN/JST.JSTAGE/bio/18.117 [pii]PubMedCrossRefGoogle Scholar
  5. Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36(4):361–368. doi: 10.1007/s10886-010-9773-7 PubMedCrossRefGoogle Scholar
  6. Alsanius BW, Hultberg M, Englund JE (2002) Effect of lacZY-marking of the 2,4-diacetyl-phloroglucinol producing Pseudomonas fluorescens-strain 5-2/4 on its physiological performance and root colonization ability. Microbiol Res 157(1):39–45PubMedCrossRefGoogle Scholar
  7. Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110(5):1235–1244. doi: 10.1111/j.1365-2672.2011.04976.x PubMedCrossRefGoogle Scholar
  8. Araus JL, Li J, Parry MA, Wang J (2014) Phenotyping and other breeding approaches for a New Green Revolution. J Integr Plant Biol 56(5):422–424. doi: 10.1111/jipb.12202 PubMedCrossRefGoogle Scholar
  9. Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20(2):171–182. doi:tpj588 [pii]PubMedCrossRefGoogle Scholar
  10. Arias MS, Pena-Cabriales JJ, Alarcon A, Maldonado Vega M (2015) Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. Int J Phytoremediation 17(1–6):405–413. doi: 10.1080/15226514.2014.898023 PubMedCrossRefGoogle Scholar
  11. Arora K, Sharma S, Monti A (2015) Bio-remediation of Pb and Cd polluted soils by switchgrass: a case study in India. Int J Phytoremediation. doi: 10.1080/15226514.2015.1131232 Google Scholar
  12. Arruda P (2012) Genetically modified sugarcane for bioenergy generation. Curr Opin Biotechnol 23(3):315–322. doi: 10.1016/j.copbio.2011.10.012 PubMedCrossRefGoogle Scholar
  13. Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16(7):835–843. doi: 10.1111/ele.12115 PubMedCrossRefGoogle Scholar
  14. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681. doi: 10.1111/j.1365-3040.2008.01926.xPCE1926 [pii]PubMedCrossRefGoogle Scholar
  15. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20(6):642–650. doi: 10.1016/j.copbio.2009.09.014 S0958-1669(09)00128-1 [pii]PubMedCrossRefGoogle Scholar
  16. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288(7):4502–4512. doi: 10.1074/jbc.M112.433300M112.433300 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bagyaraj DJ, Rangaswami G (2005) Microorganisms in soil. In: Agricultural microbiology, 2nd edn. Prentice Hall of India Private Limited, New Delhi, p 254Google Scholar
  18. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32. doi: 10.1016/j.tplants.2003.11.008 S1360-1385(03)00302-9 [pii]PubMedCrossRefGoogle Scholar
  19. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi: 10.1146/annurev.arplant.57.032905.105159 PubMedCrossRefGoogle Scholar
  20. Balseiro-Romero M, Kidd PS, Monterroso C (2014) Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Int J Phytoremediation 16(7–12):824–839. doi: 10.1080/15226514.2013.856851 PubMedCrossRefGoogle Scholar
  21. Banerjee A, Chisti Y, Banerjee UC (2004) Streptokinase – a clinically useful thrombolytic agent. Biotechnol Adv 22(4):287–307. doi:S0734975003001678 [pii]PubMedCrossRefGoogle Scholar
  22. Barrada A, Montane MH, Robaglia C, Menand B (2015) Spatial regulation of root growth: placing the plant TOR pathway in a developmental perspective. Int J Mol Sci 16(8):19671–19697. doi: 10.3390/ijms160819671 ijms160819671 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bawa AS, Anilakumar KR (2013) Genetically modified foods: safety, risks and public concerns-a review. J Food Sci Technol 50(6):1035–1046. doi: 10.1007/s13197-012-0899-1 899 [pii]PubMedCrossRefGoogle Scholar
  24. Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their see tannin content and study of their seed and root phenolic exudations. Plant Soil 203:27–36CrossRefGoogle Scholar
  25. Bell TH, Cloutier-Hurteau B, Al-Otaibi F, Turmel MC, Yergeau E, Courchesne F, St-Arnaud M (2015) Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. Environ Microbiol 17(8):3025–3038. doi: 10.1111/1462-2920.12900 PubMedCrossRefGoogle Scholar
  26. Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88(1):210–218PubMedCrossRefGoogle Scholar
  27. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. doi: 10.1016/j.tplants.2012.04.001 S1360-1385(12)00079-9 [pii]PubMedCrossRefGoogle Scholar
  28. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13. doi: 10.1111/j.1574-6941.2009.00654.x FEM654 [pii]PubMedCrossRefGoogle Scholar
  29. Bertsch J, Muller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuels 8:210. doi: 10.1186/s13068-015-0393-x 393 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi: 10.1186/1475-2859-13-66 1475-2859-13-66 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi: 10.1016/j.jenvman.2012.04.002 S0301-4797(12)00183-1 [pii]PubMedCrossRefGoogle Scholar
  32. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. doi: 10.1007/s11274-011-0979-9 PubMedCrossRefGoogle Scholar
  33. Bisht S, Pandey P, Aggarwal H et al (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76CrossRefGoogle Scholar
  34. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21. doi: 10.1590/S1517-838246120131354 1517-8382-bjm-46-01-0007 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  35. Blanco CA (2012) Heliothis virescens and Bt cotton in the United States. GM Crops Food 3(3):201–212. doi: 10.4161/gmcr.21439 21439 [pii]PubMedCrossRefGoogle Scholar
  36. Blossfeld S, Suessmilch S, Le Marie CA, Kuhn AJ (2011) Exploration of key rhizosphere parameters in plant-MFCs. Commun Agric Appl Biol Sci 76(2):7–9PubMedGoogle Scholar
  37. Bonito G, Reynolds H, Robeson MS 2nd, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol Ecol 23(13):3356–3370. doi: 10.1111/mec.12821 PubMedCrossRefGoogle Scholar
  38. Bravin MN, Tentscher P, Rose J, Hinsinger P (2009) Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environ Sci Technol 43(15):5686–5691PubMedCrossRefGoogle Scholar
  39. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488(7409):91–95. doi: 10.1038/nature11336 nature11336 [pii]PubMedCrossRefGoogle Scholar
  40. Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi: 10.1146/annurev-arplant-050312-120106 PubMedCrossRefGoogle Scholar
  41. Bulluck LR, Ristaino JB (2002) Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology 92(2):181–189. doi: 10.1094/PHYTO.2002.92.2.181 PubMedCrossRefGoogle Scholar
  42. Cabral L, Soares CR, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664. doi: 10.1007/s11274-015-1918-y [pii]PubMedCrossRefGoogle Scholar
  43. Campbell MA, Fitzgerald HA, Ronald PC (2002) Engineering pathogen resistance in crop plants. Transgenic Res 11(6):599–613PubMedCrossRefGoogle Scholar
  44. Cezard C, Farvacques N, Sonnet P (2015) Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Curr Med Chem 22(2):165–186. doi:CMC-EPUB-62749 [pii]PubMedCrossRefGoogle Scholar
  45. Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122. doi: 10.1016/j.jhazmat.2012.08.020 S0304-3894(12)00826-6 [pii]PubMedCrossRefGoogle Scholar
  46. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12(1):34–48PubMedCrossRefGoogle Scholar
  47. Chen Y, Wang Y, Wu W, Lin Q, Xue S (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ 356(1–3):247–255. doi: 10.1016/j.scitotenv.2005.04.028 S0048-9697(05)00245-7 [pii]PubMedCrossRefGoogle Scholar
  48. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315. doi:S1360-1385(02)02295-1 [pii]PubMedCrossRefGoogle Scholar
  49. Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56(2):236–249. doi: 10.1111/j.1574-6941.2005.00026.x FEM026 [pii]PubMedCrossRefGoogle Scholar
  50. Cowgill SE, Wright C, Atkinson HJ (2002) Transgenic potatoes with enhanced levels of nematode resistance do not have altered susceptibility to nontarget aphids. Mol Ecol 11(4):821–827. doi:1482 [pii]PubMedCrossRefGoogle Scholar
  51. Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249PubMedPubMedCentralCrossRefGoogle Scholar
  52. Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC (2013) Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. Am J Bot 100(9):1706–1712. doi: 10.3732/ajb.1200607 ajb.1200607 [pii]PubMedCrossRefGoogle Scholar
  53. Davison J, Opik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS One 7(8), e41938. doi: 10.1371/journal.pone.0041938 PONE-D-12-12295 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  54. de Melo RW, Schneider J, de Souza CE, Sousa SC, Guimaraes GL, de Souza MF (2014) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytoremediation 16(7–12):840–858. doi: 10.1080/15226514.2013.856852 PubMedGoogle Scholar
  55. De Souza AP, Alvim Kamei CL, Torres AF, Pattathil S, Hahn MG, Trindade LM, Buckeridge MS (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot 66(14):4351–4365. doi: 10.1093/jxb/erv183 erv183 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  56. De Vos D, Vissenberg K, Broeckhove J, Beemster GT (2014) Putting theory to the test: which regulatory mechanisms can drive realistic growth of a root? PLoS Comput Biol 10(10), e1003910. doi: 10.1371/journal.pcbi.1003910 PCOMPBIOL-D-13-02201 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  57. Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581(12):2255–2262. doi: 10.1016/j.febslet.2007.03.057 S0014-5793(07)00311-0 [pii]PubMedCrossRefGoogle Scholar
  58. Dessaux Y, Grandclement C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278. doi: 10.1016/j.tplants.2016.01.002 S1360-1385(16)00003-0 [pii]PubMedCrossRefGoogle Scholar
  59. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145. doi: 10.1038/nbt747 nbt747 [pii]PubMedCrossRefGoogle Scholar
  60. Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of Frankia and Actinorhizal plants for degraded lands reclamation. Biomed Res Int 2013:948258. doi: 10.1155/2013/948258 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817. doi: 10.1038/35081101 PubMedCrossRefGoogle Scholar
  62. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci U S A 97(12):6287–6291. doi:97/12/6287 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  63. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106(1):85–125. doi: 10.1007/s10482-013-0095-y PubMedCrossRefGoogle Scholar
  64. Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69(12):7310–7318PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dutta S, Morang P, Kumar SN, Dileep Kumar BS (2014) Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea. J Microbiol 52(9):778–784. doi: 10.1007/s12275-014-3496-3 Google Scholar
  66. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114. doi: 10.1016/j.biotechadv.2004.10.001 S0734-9750(04)00094-1 [pii]PubMedCrossRefGoogle Scholar
  67. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10(1):1–9. doi: 10.1111/j.1462-2920.2007.01424.x, EMI1424 [pii]PubMedGoogle Scholar
  68. Ehlers RU (2003) Entomopathogenic nematodes in the European biocontrol market. Commun Agric Appl Biol Sci 68(4 Pt A):3–16PubMedGoogle Scholar
  69. Ellouze W, Hamel C, Vujanovic V, Gan Y, Bouzid S, St-Arnaud M (2013) Chickpea genotypes shape the soil microbiome and affect the establishment of the subsequent durum wheat crop in the semi arid North American Great Plains. Soil Biol Biochem 63:129–141. doi: 10.1016/j.soilbio.2013.04.001 CrossRefGoogle Scholar
  70. Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol 20(6):1019–1028PubMedCrossRefGoogle Scholar
  71. Fahey C, Winter K, Slot M, Kitajima K (2016) Influence of arbuscular mycorrhizal colonization on whole-plant respiration and thermal acclimation of tropical tree seedlings. Ecol Evol 6(3):859–870. doi: 10.1002/ece3.1952 ECE31952 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  72. Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018. doi: 10.1007/s10886-013-0317-9 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206. doi: 10.1111/pbi.12279 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40(7):770–790. doi: 10.1007/s10886-014-0472-7 PubMedCrossRefGoogle Scholar
  75. Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F, Pourrut B, Dalpe Y, Grandmougin A, Douay F, Shirali P, Verdin A, Lounes-Hadj Sahraoui A (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus x giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527–528:91–99. doi: 10.1016/j.scitotenv.2015.04.116 S0048-9697(15)30050-4 [pii]PubMedCrossRefGoogle Scholar
  76. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80(15):4803–4807PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17(10):1017–1020. doi: 10.1038/13717 PubMedCrossRefGoogle Scholar
  78. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17(5):491–494. doi: 10.1038/8673 PubMedCrossRefGoogle Scholar
  79. Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12(9):1246–1258. doi: 10.1111/pbi.12300 PubMedCrossRefGoogle Scholar
  80. Gevaudant F, Duby G, von Stedingk E, Zhao R, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+−ATPase alters plant development and increases salt tolerance. Plant Physiol 144(4):1763–1776. doi:pp.107.103762 [pii]  10.1104/pp.107.103762 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ghosh R, Barman S, Mukherjee R, Mandal NC (2016) Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiol Res 183:80–91. doi: 10.1016/j.micres.2015.11.011 S0944-5013(15)30033-1 [pii]PubMedCrossRefGoogle Scholar
  82. Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445. doi:S0006291X03003498 [pii]PubMedCrossRefGoogle Scholar
  83. GM Approval Databse-ISAAA.org (2016) http://www.isaaa.org. Accessed 5 Apr 2016
  84. Gordon DM, Ryder MH, Heinrich K, Murphy PJ (1996) An experimental test of the rhizopine concept in Rhizobium meliloti. Appl Environ Microbiol 62(11):3991–3996PubMedPubMedCentralGoogle Scholar
  85. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286. doi: 10.1038/7029 PubMedCrossRefGoogle Scholar
  86. Gregory PJ, Atkinson CJ, Bengough AG, Else MA, Fernandez-Fernandez F, Harrison RJ, Schmidt S (2013) Contributions of roots and rootstocks to sustainable, intensified crop production. J Exp Bot 64(5):1209–1222. doi: 10.1093/jxb/ers385 ers385 [pii]PubMedCrossRefGoogle Scholar
  87. Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N, Tisa LS (2012) Phylogenetic perspectives of nitrogen-fixing Actinobacteria. Arch Microbiol 194(1):3–11. doi: 10.1007/s00203-011-0733-6 PubMedCrossRefGoogle Scholar
  88. Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772. doi: 10.1146/annurev.mi.48.100194.003523 PubMedCrossRefGoogle Scholar
  89. Gupta S, Sharma P, Dev K, Sourirajan A (2016) Halophilic bacteria of Lunsu produce an array of industrially important enzymes with salt tolerant activity. Biochem Res Int 2016:9237418. doi: 10.1155/2016/9237418 PubMedPubMedCentralGoogle Scholar
  90. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121. doi: 10.1155/2013/329121 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi: 10.1146/annurev.phyto.41.052002.095656 052002.095656 [pii]PubMedCrossRefGoogle Scholar
  92. Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JA, Shanks JV, Bruce NC (2007) Enhanced transformation of tnt by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9(5):385–401. doi: 10.1080/15226510701603916 PubMedCrossRefGoogle Scholar
  93. Hardtke CS, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends Cell Biol 17(10):485–492. doi: 10.1016/j.tcb.2007.08.003 S0962-8924(07)00191-2 [pii]PubMedCrossRefGoogle Scholar
  94. Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schaffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9(1):29–47PubMedCrossRefGoogle Scholar
  95. Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D (2016) Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi J Biol Sci 23(1):39–47. doi: 10.1016/j.sjbs.2015.11.007 S1319-562X(15)00277-6 [pii]PubMedCrossRefGoogle Scholar
  96. Hill K, Porco S, Lobet G, Zappala S, Mooney S, Draye X, Bennett MJ (2013) Root systems biology: integrative modeling across scales, from gene regulatory networks to the rhizosphere. Plant Physiol 163(4):1487–1503. doi: 10.1104/pp.113.227215 pp.113.227215 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hiltner L (1904) U¨ ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unterbessonderer Ber ¨ ucksichtigung der Gr¨undung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78Google Scholar
  98. Hiltpold I, Turlings TC (2012) Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield. J Chem Ecol 38(6):641–650. doi: 10.1007/s10886-012-0131-9 PubMedCrossRefGoogle Scholar
  99. Hiltpold I, Jaffuel G, Turlings TC (2015) The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. J Exp Bot 66(2):603–611. doi: 10.1093/jxb/eru345 eru345 [pii]PubMedCrossRefGoogle Scholar
  100. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124(1):125–133PubMedPubMedCentralCrossRefGoogle Scholar
  101. Honeycutt CW (1998) Crop rotation impacts on potato protein. Plant Foods Hum Nutr 52(4):279–291PubMedCrossRefGoogle Scholar
  102. Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang J, Subke JA (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytol 199(2):339–351PubMedCrossRefGoogle Scholar
  103. Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B (2014) A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. PLoS One 9(11), e113581. doi: 10.1371/journal.pone.0113581 PONE-D-14-31239 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  104. Huang RH, Yang HL, Huang W, Lu YM, Chen K (2015) Effects of Funneliformis mosseae on endogenous hormones and photosynthesis of Sorghum haipense under Cs stress. Ying Yong Sheng Tai Xue Bao 26(7):2146–2150PubMedGoogle Scholar
  105. Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots Almus glutinosa to light on flavonoid and nodulation. Can J Bot 77:1311–1315Google Scholar
  106. Hwang KY, Song HK, Chang C, Lee J, Lee SY, Kim KK, Choe S, Sweet RM, Suh SW (1997) Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution. Mol Cells 7(2):251–258PubMedGoogle Scholar
  107. Ibanez S, Talano M, Ontanon O, Suman J, Medina MI, Macek T, Agostini E (2015) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N Biotechnol. doi:S1871-6784(15)00267-8 [pii]  10.1016/j.nbt.2015.11.008
  108. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197. doi: 10.1104/pp.110.154773 pp.110.154773 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  109. Jia H, Fan Y, Feng X, Li C (2014) Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2:44. doi: 10.3389/fbioe.2014.00044 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Jones AG (2008) A theoretical quantitative genetic study of negative ecological interactions and extinction times in changing environments. BMC Evol Biol 8:119. doi: 10.1186/1471-2148-8-1191471-2148-8-119[pii] PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kabouw P, van Dam NM, van der Putten WH, Biere A (2012) How genetic modification of roots affects rhizosphere processes and plant performance. J Exp Bot 63(9):3475–3483. doi: 10.1093/jxb/err399 err399 [pii]PubMedCrossRefGoogle Scholar
  112. Kenney E, Eleftherianos I (2016) Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 46(1):13–19. doi: 10.1016/j.ijpara.2015.09.005 S0020-7519(15)00260-X [pii]PubMedCrossRefGoogle Scholar
  113. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236. doi: 10.1146/annurev.micro.56.012302.161120 012302.161120 [pii]PubMedCrossRefGoogle Scholar
  114. Khan AG (2006) Mycorrhizoremediation–an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7(7):503–514. doi: 10.1631/jzus.2006.B0503 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Khan MI, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA (2015) Role of ethylene in responses of plants to nitrogen availability. Front Plant Sci 6:927. doi: 10.3389/fpls.2015.00927 PubMedPubMedCentralGoogle Scholar
  116. Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121. doi: 10.1186/1471-2229-11-121 1471-2229-11-121 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kikulwe EM, Wesseler J, Falck-Zepeda J (2011) Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda. Appetite 57(2):401–413. doi: 10.1016/j.appet.2011.06.001 S0195-6663(11)00483-1 [pii]PubMedCrossRefGoogle Scholar
  118. Kisiel A, Kepczynska E (2016) Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta. doi: 10.1007/s00425-016-2469-7  10.1007/s00425-016-2469-7 [pii]
  119. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70. doi: 10.1038/417067a 417067a [pii]PubMedCrossRefGoogle Scholar
  120. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95(12):7203–7208PubMedPubMedCentralCrossRefGoogle Scholar
  121. Koller R, Robin C, Bonkowski M, Ruess L, Scheu S (2013a) Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. FEMS Microbiol Ecol 85(2):241–250. doi: 10.1111/1574-6941.12113 PubMedCrossRefGoogle Scholar
  122. Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013b) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199(1):203–211. doi: 10.1111/nph.12249 PubMedCrossRefGoogle Scholar
  123. Konsoula Z, Liakopoulou-Kyriakides M (2007) Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour Technol 98(1):150–157. doi: 10.1016/j.biortech.2005.11.001 S0960-8524(05)00525-0 [pii]PubMedCrossRefGoogle Scholar
  124. Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41(9):1030–1037PubMedCrossRefGoogle Scholar
  125. Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14(10):1197–1205. doi: 10.1094/MPMI.2001.14.10.1197 PubMedCrossRefGoogle Scholar
  126. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15. doi: 10.1094/MPMI.2004.17.1.6 PubMedCrossRefGoogle Scholar
  127. Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43(4):1595–1603. doi: 10.1590/S1517-838220120004000044 S1517-838220120004000044 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  128. Kwak YS, Weller DM (2013) Take-all of wheat and natural disease suppression: a review. Plant Pathol J 29(2):125–135. doi: 10.5423/PPJ.SI.07.2012.0112 ppj-29-125 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  129. Labidi S, Jeddi FB, Tisserant B, Yousfi M, Sanaa M, Dalpé Y, Sahraoui AL (2015) Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25(4):297–309. doi: 10.1007/s00572-014-0609-0 PubMedCrossRefGoogle Scholar
  130. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. doi: 10.1016/j.jip.2015.07.009 S0022-2011(15)00134-2 [pii]PubMedCrossRefGoogle Scholar
  131. Lai MC, Lan EI (2015) Advances in metabolic engineering of Cyanobacteria for photosynthetic biochemical production. Metabolites 5(4):636–658. doi: 10.3390/metabo5040636 metabo5040636 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  132. Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166(2):689–700. doi: 10.1104/pp.114.245811 pp.114.245811 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  133. Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem 74(5):1098–101. doi: 10.1271/bbb.90898[pii] PubMedCrossRefGoogle Scholar
  134. Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41(3):121–125. doi: 10.5941/MYCO.2013.41.3.121 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lenoir I, Fontaine J, Lounes-Hadj Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15. doi: 10.1016/j.phytochem.2016.01.002 S0031-9422(16)30002-4 [pii]PubMedCrossRefGoogle Scholar
  136. Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6), e0130081. doi: 10.1371/journal.pone.0130081 PONE-D-15-00619 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lim SL, Wu TY, Lim PN, Shak KP (2015) The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric 95(6):1143–1156. doi: 10.1002/jsfa.6849 PubMedCrossRefGoogle Scholar
  138. Lojkova L, Vranova V, Rejsek K, Formanek P (2014) Natural occurrence of enantiomers of organic compounds versus phytoremediations: should research on phytoremediations be revisited? A mini-review. Chirality 26(1):1–20. doi: 10.1002/chir.22255 PubMedCrossRefGoogle Scholar
  139. Lu YF, Lu M, Peng F, Wan Y, Liao MH (2014) Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. Chemosphere 106:44–50. doi: 10.1016/j.chemosphere.2013.12.089 S0045-6535(14)00026-5 [pii]PubMedCrossRefGoogle Scholar
  140. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161. doi: 10.1038/ng2074 ng2074 [pii]PubMedCrossRefGoogle Scholar
  141. Mark G, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56(2):167–177. doi: 10.1111/j.1574-6941.2006.00056.x FEM056 [pii]PubMedCrossRefGoogle Scholar
  142. Marsalek B, Simek M (1992) Abscisic acid and its synthetic analog in relation to growth and nitrogenase activity of Azotobacter chroococcum and Nostoc muscorum. Folia Microbiol (Praha) 37(2):159–160CrossRefGoogle Scholar
  143. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  144. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572. doi: 10.1016/j.plaphy.2004.05.009 S0981-9428(04)00076-2 [pii]PubMedCrossRefGoogle Scholar
  145. Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81(1–4):557–564PubMedCrossRefGoogle Scholar
  146. Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39(3):213–220PubMedPubMedCentralGoogle Scholar
  147. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100. doi: 10.1126/science.1203980.science.1203980 [pii]PubMedCrossRefGoogle Scholar
  148. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663. doi: 10.1111/1574-6976.12028 PubMedCrossRefGoogle Scholar
  149. Micallef SA, Channer S, Shiaris MP, Colon-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4(8):777–780. doi: 10.1093/jxb/erp053 9229 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  150. Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2015) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation. doi: 10.1080/15226514.2015.1131231 Google Scholar
  151. Montes-Borrego M, Metsis M, Landa BB (2014) Arbuscular mycorrhizal fungi associated with the olive crop across the Andalusian landscape: factors driving community differentiation. PLoS One 9(5), e96397. doi: 10.1371/journal.pone.0096397 PONE-D-13-49105 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  152. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdu M (2012) Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytol 196(3):835–844. doi: 10.1111/j.1469-8137.2012.04290.x PubMedCrossRefGoogle Scholar
  153. Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170(1):165–175. doi: 10.1111/j.1469-8137.2006.01650.x NPH1650 [pii]PubMedCrossRefGoogle Scholar
  154. Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43(2):239–244PubMedCrossRefGoogle Scholar
  155. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132(1):146–153. doi: 10.1104/pp.102.016295 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726PubMedCrossRefGoogle Scholar
  157. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15(3):225–230. doi: 10.1016/j.copbio.2004.04.006 S0958166904000588 [pii]PubMedCrossRefGoogle Scholar
  158. Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71(11):6784–6792. doi:71/11/6784 [pii]  10.1128/AEM.71.11.6784-6792.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15(4):369–372. doi: 10.1038/nbt0497-369 PubMedCrossRefGoogle Scholar
  160. Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590. doi: 10.1128/AEM.01240-09 AEM.01240-09 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  161. Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268(1):34–39. doi: 10.1111/j.1574-6968.2006.00602.x FML602 [pii]PubMedCrossRefGoogle Scholar
  162. Paulin MM, Novinscak A, St-Arnaud M, Goyer C, DeCoste NJ, Prive JP, Owen J, Filion M (2009) Transcriptional activity of antifungal metabolite-encoding genes phlD and hcnBC in Pseudomonas spp. using qRT-PCR. FEMS Microbiol Ecol 68(2):212–222. doi: 10.1111/j.1574-6941.2009.00669.x FEM669 [pii]PubMedCrossRefGoogle Scholar
  163. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97(9):4956–4960, 97/9/4956 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  164. Perez-Alfocea F, Ghanem ME, Gomez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS 15(12):893–901. doi: 10.1089/omi.2011.0092 PubMedCrossRefGoogle Scholar
  165. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336. doi: 10.1016/j.micres.2013.09.011 S0944-5013(13)00164-X [pii]PubMedCrossRefGoogle Scholar
  166. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. doi: 10.1038/nrmicro3109 mnrmicro3109 [pii]PubMedCrossRefGoogle Scholar
  167. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. doi: 10.1146/annurev.arplant.56.032604.144214 PubMedCrossRefGoogle Scholar
  168. Pilon-Smits EA, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119(1):123–132PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9(6):263–266. doi: 10.1016/j.tplants.2004.04.008 S1360-1385(04)00105-0 [pii]PubMedCrossRefGoogle Scholar
  170. Plett D, Safwat G, Gilliham M, Skrumsager Moller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5(9), e12571. doi: 10.1371/journal.pone.0012571 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359. doi: 10.1016/j.jplph.2009.02.010 S0176-1617(09)00080-7 [pii]PubMedCrossRefGoogle Scholar
  172. Powell PE, Szaniszlo PJ, Reid CP (1983) Confirmation of occurrence of hydroxamate siderophores in soil by a novel Escherichia coli bioassay. Appl Environ Microbiol 46(5):1080–1083PubMedPubMedCentralGoogle Scholar
  173. Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507. doi: 10.3389/fpls.2015.00507 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737. doi:nature03451 [pii]  10.1038/nature03451 PubMedCrossRefGoogle Scholar
  175. Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168(2):305–312. doi: 10.1111/j.1469-8137.2005.01558.x NPH1558 [pii]PubMedCrossRefGoogle Scholar
  176. Reynolds HL, Smith AA, Farmer JR (2014) Think globally, research locally: paradigms and place in agroecological research. Am J Bot 101(10):1631–1639. doi: 10.3732/ajb.1400146 ajb.1400146 [pii]PubMedCrossRefGoogle Scholar
  177. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53. doi: 10.1111/j.1469-8137.2006.01750.x NPH1750 [pii]PubMedCrossRefGoogle Scholar
  178. Rivoal J, Hanson AD (1994) Metabolic control of anaerobic glycolysis overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion. Plant Physiol 106:1179–1185PubMedPubMedCentralCrossRefGoogle Scholar
  179. Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97(22):12356–12360. doi: 10.1073/pnas.210214197 210214197 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  180. Roose T, Schnepf A (2008) Mathematical models of plant-soil interaction. Philos Trans A Math Phys Eng Sci 366(1885):4597–4611. doi: 10.1098/rsta.2008.0198 2RT9X62Q81L87186 [pii]PubMedCrossRefGoogle Scholar
  181. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93(8):3182–3187PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ryan P, Dessaux Y, Thomashow L, Weller D (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383. doi: 10.1007/s11104-009-0001-6 CrossRefGoogle Scholar
  183. Savka MA, Dessaux Y, Oger P, Rossbach S (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant Microbe Interact 15(9):866–874. doi: 10.1094/MPMI.2002.15.9.866 PubMedCrossRefGoogle Scholar
  184. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69. doi: 10.1146/annurev.arplant.58.032806.103750 PubMedCrossRefGoogle Scholar
  185. Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280. doi: 10.3389/fmicb.2015.01280 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57. doi: 10.1146/annurev.genet.32.1.33 PubMedCrossRefGoogle Scholar
  187. Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249CrossRefGoogle Scholar
  188. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587. doi: 10.1186/2193-1801-2-587 1439 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  189. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880. doi: 10.1111/j.1462-2920.2006.01141.x EMI1141 [pii]PubMedCrossRefGoogle Scholar
  190. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. doi: 10.1016/j.sjbs.2014.12.001 S1319-562X(14)00171-5 [pii]PubMedCrossRefGoogle Scholar
  191. Silva JP, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl Biochem Biotechnol 162(5):1306–1315. doi: 10.1007/s12010-009-8867-6 PubMedCrossRefGoogle Scholar
  192. Singh S, Grover A, Nasim M (2016) Biofuel potential of plants transformed genetically with NAC family genes. Front Plant Sci 7:22. doi: 10.3389/fpls.2016.00022 PubMedPubMedCentralGoogle Scholar
  193. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67(10):4742–4751PubMedPubMedCentralCrossRefGoogle Scholar
  194. Sokarda Slavić M, Pesic M, Vujcic Z, Bozic N (2016) Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a alpha-amylase. Appl Microbiol Biotechnol 100(6):2709–2719. doi: 10.1007/s00253-015-7101-4  10.1007/s00253-015-7101-4 [pii]
  195. Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189(21):7626–7633. doi: 10.1128/JB.00830-07 JB.00830-07 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  196. Spiers AS, Wade HE (1976) Bacterial glutaminase in treatment of acute leukaemia. Br Med J 1(6021):1317–1319PubMedPubMedCentralCrossRefGoogle Scholar
  197. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505. doi:71/12/8500 [pii]  10.1128/AEM.71.12.8500-8505.2005
  198. Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127(4):1836–1844PubMedPubMedCentralCrossRefGoogle Scholar
  199. Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Osenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19(2):273–280. doi: 10.1021/bp025623q PubMedCrossRefGoogle Scholar
  200. Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13(12):1293–1300. doi: 10.1094/MPMI.2000.13.12.1293 PubMedCrossRefGoogle Scholar
  201. Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12(11):951–959. doi: 10.1094/MPMI.1999.12.11.951 PubMedCrossRefGoogle Scholar
  202. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Becard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110(50):20117–20122. doi: 10.1073/pnas.1313452110 1313452110 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  203. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240. doi: 10.1155/2013/863240 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Underkofler LA, Barton RR, Rennert SS (1958) Production of microbial enzymes and their applications. Appl Microbiol 6(3):212–221PubMedPubMedCentralGoogle Scholar
  205. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265. doi: 10.1016/j.tplants.2016.01.008 S1360-1385(16)00009-1 [pii]PubMedCrossRefGoogle Scholar
  206. van der Heijden MG, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172(4):739–752. doi: 10.1111/j.1469-8137.2006.01862.x NPH1862 [pii]PubMedCrossRefGoogle Scholar
  207. van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119(3):1047–1055PubMedPubMedCentralCrossRefGoogle Scholar
  208. Vivas A, Voros I, Biro B, Campos E, Barea JM, Azcon R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126(2):179–189, S0269749103003001957 [pii]PubMedCrossRefGoogle Scholar
  209. Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav 11(2), e1131372. doi: 10.1080/15592324.2015.1131372 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134(1):320–331. doi: 10.1104/pp.103.027888 pp.103.027888 [pii]
  211. Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56(4):1012–1016PubMedPubMedCentralGoogle Scholar
  212. Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46(10):898–907PubMedCrossRefGoogle Scholar
  213. Wang P, Bi S, Wang S, Ding Q (2006) Variation of wheat root exudates under aluminum stress. J Agric Food Chem 54(26):10040–10046. doi: 10.1021/jf061249o PubMedCrossRefGoogle Scholar
  214. Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14(3):334–342. doi: 10.1111/j.1462-5822.2011.01736.x PubMedCrossRefGoogle Scholar
  215. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951. doi: 10.1038/nbt.2969 nbt.2969 [pii]PubMedCrossRefGoogle Scholar
  216. Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 15(8):145. doi: 10.1186/s13068-015-0331-y CrossRefGoogle Scholar
  217. Wang J, Li Q, Mao X, Li A, Jing R (2016a) Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. Int J Biol Sci 12(2):257–269. doi: 10.7150/ijbs.13538 ijbsv12p0257 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  218. Wang X, Wu D, Yang Q, Zeng J, Jin G, Chen ZH, Zhang G, Dai F (2016b) Identification of mild freezing shock response pathways in barley based on transcriptome profiling. Front Plant Sci 7:106. doi: 10.3389/fpls.2016.00106 PubMedPubMedCentralGoogle Scholar
  219. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120(3):705–716PubMedPubMedCentralCrossRefGoogle Scholar
  220. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231(3):499–506. doi: 10.1007/s00425-009-1076-2 PubMedCrossRefGoogle Scholar
  221. Wentzell AM, Kliebenstein DJ (2008) Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol 147(1):415–428. doi: 10.1104/pp.107.115279 pp.107.115279 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  222. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16(10):25576–25604. doi: 10.3390/ijms161025576 ijms161025576 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  223. Xiao C, Janssens IA, Liu P, Zhou Z, Sun OJ (2007) Irrigation and enhanced soil carbon input effects on below-ground carbon cycling in semiarid temperate grasslands. New Phytol 174(4):835–846. doi: 10.1111/j.1469-8137.2007.02054.x NPH2054 [pii]PubMedCrossRefGoogle Scholar
  224. Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22(1):598–608. doi: 10.1007/s11356-014-3396-4 PubMedCrossRefGoogle Scholar
  225. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+−pyrophosphatase. Plant Biotechnol J 5(6):735–745. doi: 10.1111/j.1467-7652.2007.00281.x PBI281 [pii]PubMedCrossRefGoogle Scholar
  226. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4. doi: 10.1016/j.tplants.2008.10.004 S1360-1385(08)00290-2 [pii]PubMedCrossRefGoogle Scholar
  227. Yang Z, Chen H, Tang W, Hua H, Lin Y (2011) Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci 67(4):414–422. doi: 10.1002/ps.2079 PubMedCrossRefGoogle Scholar
  228. Yang Y, Liang Y, Ghosh A, Song Y, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut Res Int 22(17):13179–13193. doi: 10.1007/s11356-015-4521-8 PubMedCrossRefGoogle Scholar
  229. Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8(2):344–358. doi: 10.1038/ismej.2013.163 ismej2013163 [pii]PubMedCrossRefGoogle Scholar
  230. Zaitsev S, Spitzer D, Murciano JC, Ding BS, Tliba S, Kowalska MA, Marcos-Contreras OA, Kuo A, Stepanova V, Atkinson JP, Poncz M, Cines DB, Muzykantov VR (2010) Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood 115(25):5241–5248. doi: 10.1182/blood-2010-01-261610 blood-2010-01-261610 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  231. Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21(6):737–744. doi: 10.1094/MPMI-21-6-0737 PubMedCrossRefGoogle Scholar
  232. Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015a) Engineering the plant rhizosphere. Curr Opin Biotechnol 32:136–142. doi: 10.1016/j.copbio.2014.12.006 S0958-1669(14)00221-3 [pii]PubMedCrossRefGoogle Scholar
  233. Zhang T, Chaturvedi V, Chaturvedi S (2015b) Novel Trichoderma polysporum strain for the biocontrol of Pseudogymnoascus destructans, the fungal etiologic agent of bat white nose syndrome. PLoS One 10(10), e0141316. doi: 10.1371/journal.pone.0141316 PONE-D-14-51371 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  234. Zhang F, Ge H, Guo N, Wang Y, Chen L, Ji X, Li C (2016) Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiol Biochem 100:64–74. doi: 10.1016/j.plaphy.2015.12.017 S0981-9428(15)30195-9 [pii]PubMedCrossRefGoogle Scholar
  235. Zhu YG, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20(2):220–224. doi: 10.1016/j.copbio.2009.02.011 S0958-1669(09)00024-X [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  236. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121(4):1169–1178PubMedPubMedCentralCrossRefGoogle Scholar
  237. Zhu JR, Zhou H, Pan YB, Lu X (2014) Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L. Genet Mol Res 13(2):3037–3047. doi: 10.4238/2014.January.24.3 gmr3004 [pii]PubMedCrossRefGoogle Scholar
  238. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413. doi: 10.1016/j.envint.2006.12.005 S0160-4120(07)00003-7 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia
  2. 2.Department of BiochemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations