Advertisement

Significance of Arbuscular Mycorrhizal Fungi and Rhizosphere Microflora in Plant Growth and Nutrition

  • Hindumathi Amballa
  • Narasimha Reddy BhumiEmail author
Chapter

Abstract

Arbuscular mycorrhizal fungi are common components of soil microorganisms inhabiting the rhizosphere. The rhizosphere is a dynamic microhabitat where microorganisms, plant roots and soil constituents interact with constituting root-soil interface. The rhizosphere of mycorrhizal plants – the ‘mycorrhizosphere’ – harbours a wide range of microbial activities responsible for several ecosystem processes. Arbuscular mycorrhizal fungi interact with microorganisms colonizing the rhizosphere. The microbial interactions in the mycorrhizosphere are the primary determinants of plant health and soil quality. This chapter summarizes various microbial interactions between mycorrhizal fungi and other soil microbial communities. This chapter discusses (1) microbial communities in the soil, (2) arbuscular mycorrhizal fungal interaction with plants, (3) interaction with rhizosphere microorganisms, (4) interaction with soilborne pathogens, (5) potential benefits of arbuscular mycorrhizal fungi in plant growth and disease control and (6) effect of soil microorganisms on mycorrhizal symbiosis. The main conclusion is that the microbial population interactions with arbuscular mycorrhizal fungi in the rhizosphere majorly influence plant health, crop productivity and soil fertility. Arbuscular mycorrhizal fungi in corporation with other rhizosphere microbial organisms can contribute to improve plant growth and nutrition.

Keywords

Arbuscular mycorrhizal fungi Mycorrhizosphere Plant health Plant growth-promoting rhizobacteria Rhizosphere 

List of Abbreviations

A

Acaulospora

AM

Arbuscular mycorrhiza

AMF

Arbuscular mycorrhizal fungi

AMB

Bacteria associated with arbuscular mycorrhizal fungi

AV

Auxiliary cells

BLO

Bacteria-like organisms

Br

Bromine

C

Carbon

C-source

Carbon source

Ca

Calcium

CBE

Chlorazol black E

cfu

Colony-forming units

Cl

Chlorine

CO2

Carbon dioxide

Cu

Copper

DNA

Deoxyribonucleic acid

ERH

Extraradical hyphae

F

Funneliformis

Fe

Iron

G

Glomus

Gig.

Gigaspora

GM

Genetically modified

rDNA

Ribosomal deoxyribonucleic acid

H

Soil hyphae

μm

Micrometre

Mg

Magnesium

Mn

Manganese

K

Potassium

MHB

Mycorrhizal-helper bacteria

N

Nitrogen (Elemental Nitrogen)

N2

Nitrogen (Molecular Nitrogen)

NH4+

Ammonium ion

Ni

Nickel

NO3

Nitrate ion

O2

Oxygen

P

Pseudomonas

Pb

Lead

PGPR

Plant growth-promoting rhizobacteria

pH

Hydrogen ion concentration

PR

Pathogenesis-related proteins

PSB

Phosphate-solubilizing bacteria

S

Sulphur

SAR

Systemic acquired resistance

S

Scutellospora

Spp.

Species

T

Trichoderma

VAM

Vesicular arbuscular mycorrhizal fungi

WT

Wild type

Zn

Zinc

15N

Isotope of nitrogen with atomic mass 15

31P

Isotope of phosphorus with atomic mass 31

32P

Isotope of phosphorus with atomic mass 32

Notes

Acknowledgments

Dr. A. Hindumathi is grateful to DST, New Delhi for providing fellowship under Women Scientist Scheme-A (WOS-A) with grant No. SR/WOS-A/LS-498/2011.

References

  1. Abbott LK, Robson AD (1977) Growth stimulation of subterranean clover with vesicular–arbuscular mycorrhizas. Aust J Agric Res 29:639–649CrossRefGoogle Scholar
  2. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12. doi: 10.1007/s00253-009-2196 PubMedCrossRefGoogle Scholar
  3. Andrade G, Azcón R, Bethlenfalvay GJ (1995) A rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomus mosseae. Appl Soil Ecol 2:195–202CrossRefGoogle Scholar
  4. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphorhizosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  5. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  6. Aspray TJ, Frey-Klett P, Jones JE, Whipps JM, Garbaye J, Bending GD (2006) Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541. doi: 10.1007/s00572-006-0068-3 PubMedCrossRefGoogle Scholar
  7. Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381CrossRefGoogle Scholar
  8. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24. doi: 10.1007/s00572-014-0585-4 PubMedCrossRefGoogle Scholar
  9. Azcón R (1987) Germination and hyphal growth of Glomus mosseae in vitro: effects of rhizosphere bacteria and cell-free culture media. Soil Biol Biochem 19:417–419CrossRefGoogle Scholar
  10. Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning. An integrative plant-fungal process. Routledge/Chapman & Hall Inc, New York, pp 163–198Google Scholar
  11. Azcón-Aguilar C, Barea JM (1995) Saprophytic growth of arbuscular-mycorrhizal fungi. In: Hock B, Varma A (eds) Mycorrhiza structure function, molecular biology and biotechnology. Springer-Verlag, Heidelberg, pp 391–407Google Scholar
  12. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  13. Azcón-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to bioproducts. Birkhauser Verlag, Berlin, pp 187–197. ISBN 10: 0-89054-245-71CrossRefGoogle Scholar
  14. Bagyaraj DJ (1984) Biological interactions with VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC, Boca Raton, pp 131–153Google Scholar
  15. Bagyaraj DJ, Manjunath A, Patil RB (1979a) Interaction between a vesicular-arbuscular mycorrhiza and Rhizobium and their effects on soybean in the field. New Phytol 82:141–145CrossRefGoogle Scholar
  16. Bagyaraj DJ, Manjunath A, Patil RB (1979b) Interaction of vesicular-arbuscular mycorrhiza with root knot nematode in tomato. Plant Soil 51:397CrossRefGoogle Scholar
  17. Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158Google Scholar
  18. Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Toutant JP, Balazs E, Galante E, Lynch JM, Schepers JS, Werner D, Werry PA (eds) Biological resource management: Connecting science and policy (OECD). Springer/INRA, Berlin/Paris, pp 110–125Google Scholar
  19. Barea JM, Brown ME, Mosse B (1973) Association between VA mycorrhiza and Azotobacter. Rothamsted Exp Stat Annu Rep 1:82Google Scholar
  20. Barea JM, Azcón-Aguilar C, Azcón R (1996) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant system. In: Ganga AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 65–77Google Scholar
  21. Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 65–77Google Scholar
  22. Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcón-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64:2304–2307PubMedPubMedCentralGoogle Scholar
  23. Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002a) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42Google Scholar
  24. Barea JM, Azcón R, Azcón-Aguilar C (2002b) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J G 81:343–351Google Scholar
  25. Barea JM, Gryndler M, Lemanceau P, Schüepp H, Azcón R (2002c) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhäuser Verlag, Basel, pp 1–18Google Scholar
  26. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  27. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedPubMedCentralGoogle Scholar
  28. Bentivenga SP, Morton JB (1994) Systemics of glomalean endomycorrhizal fungi: current views and future directions. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS press, Minnesota, pp 283–308Google Scholar
  29. Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Special publication no. 54, MadisonGoogle Scholar
  30. Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Anton Leeuw Int J G 81:365–371CrossRefGoogle Scholar
  31. Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  32. Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. nov. sp nov. an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124Google Scholar
  33. Biro B, Koves-Pechy K, Voros I, Takacs T, Eggenberg P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa at sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15:159–168CrossRefGoogle Scholar
  34. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  35. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  36. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495PubMedCrossRefGoogle Scholar
  37. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR, CanberraGoogle Scholar
  38. Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  39. Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhiza. New Phytol 80:125–134CrossRefGoogle Scholar
  40. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Academic Press, San DiegoGoogle Scholar
  41. Carling DE, Richie WG, Brown MF, Tinker PB (1978) Effects of vesicular-arbuscular mycorrhizal fungus on nitrate reductase and nitrogenase activities in nodulating and non-nodulating soybeans. Phytopathol 68:1590–1596CrossRefGoogle Scholar
  42. Caron M, Richard C, Fortin JA (1986) Effect of preinfestation of the soil by a vesicular-arbuscular mycorrhizal fungus, Glomus intraradices, on Fusarium crown and root rot of tomatoes. Phytoprotection 67:15–19Google Scholar
  43. Chabot R, Antoun H, Cescas MC (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum, Biovar phaseoli. Plant Soil 184:311–321CrossRefGoogle Scholar
  44. Chanway CP, Turkington R, Holl FB (1991) Ecological implications of specificity between plants and rhizosphere microorganisms. Adv Ecol Res 21:121–169CrossRefGoogle Scholar
  45. Chhabra ML, Bhatnagar MK, Sharma MP (1992) Influence of vesicular arbuscular (VA) mycorrhizal fungus on important diseases of maize. Indian Phytopathol 45:235–236Google Scholar
  46. Cordier C, Lemoine MC, Lemanceau P, Gianinazzi-Pearson V, Gianinazzi S (1999) The beneficial rhizosphere: a necessary strategy for microplant production. Acta Hortic 530:259–265Google Scholar
  47. Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol 72:1115–1119Google Scholar
  48. Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 116:297–303CrossRefGoogle Scholar
  49. Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132CrossRefGoogle Scholar
  50. Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber der Deut Bot Ges 3:128–145Google Scholar
  51. Friberg S (2001) Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on the Niger inland delta, Mali, West Africa. CBM’s Skriftserie 3:53–80Google Scholar
  52. Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418CrossRefGoogle Scholar
  53. Galal YGM, El-Ghandour IA, Osman ME, Abdel Raouf AMN (2003) The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15N techniques. Symbiosis 34:171–183Google Scholar
  54. Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63PubMedCrossRefGoogle Scholar
  55. Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375CrossRefGoogle Scholar
  56. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  57. Gerdemann JW (1975) Vesicular arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, New York, pp 575–595Google Scholar
  58. Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytol 82:127–132CrossRefGoogle Scholar
  59. Gilbert RG, Linderman RG (1971) Increased activity of soil microorganisms near sclerotia of Sclerotium rolfsii in soil. Can J Microbiol 17:557–562PubMedCrossRefGoogle Scholar
  60. Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 3–18Google Scholar
  61. Giovannetti M, Sbrana C (1998) Meeting a nonhost: the behaviour of AM fungi. Mycorrhiza 8:123–130CrossRefGoogle Scholar
  62. Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312PubMedCrossRefGoogle Scholar
  63. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 239–262CrossRefGoogle Scholar
  64. Gryndler M, Vosatka M (1996) The response of Glomus fistulosum-maize mycorrhiza to treatments with culture fractions from Pseudomonas putida. Mycorrhiza 6:207–211CrossRefGoogle Scholar
  65. Gryndler M, Hrselova H, Chvatalova I (1996) Effect of free-soil-inhabiting or root associated microfungi on the development of arbuscular mycorrhizae and on proliferation of intraradical mycorrhizae hyphae. Folia Microbiol 41:193–196CrossRefGoogle Scholar
  66. Gryndler M, Hrselová H, Stríteská D (2000) Effect of soil bacteria on growth of hyphae of the arbuscular mycorrhizal (AM) fungus Glomus claroideum. Folia Microbiol 45:545–551CrossRefGoogle Scholar
  67. Hameeda B, Srijana M, Rupela OP, Reddy G (2007) Effect of bacteria isolated from composts and macrofauna on sorghum growth and mycorrhizal colonization. World J Microbiol Biotechnol 23:883–887CrossRefGoogle Scholar
  68. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  69. Harrison MJ (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci Rev 2:54–60CrossRefGoogle Scholar
  70. Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285CrossRefGoogle Scholar
  71. Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a semi natural woodland. Mol Ecol 8:659–666CrossRefGoogle Scholar
  72. Hepper CM, Sen R, Azcon-Aguilar C, Grace C (1988) Variation in certain isozymes amongst different geographical isolates of the vesicular-arbuscular mycorrhizal fungi Glomus clarum, Glomus monosporum and Glomus mosseae. Soil Biol Biochem 20:51–59CrossRefGoogle Scholar
  73. Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hiltner L (1904) Uber neuere erFahrungen und probleme auf dem gebiet der bodenbakteruiligie und unter besonderer berucksichtiguang der grundungung und brache. Arb Deutsch Landwirt ges 98:59–78Google Scholar
  75. Hindumathi A (1999) Role of arbuscular mycorrhizae in plant growth and biocontrol of charcoal rot in sorghum. PhD thesis, Department of Botany, Osmania University, Hyderabad, IndiaGoogle Scholar
  76. Hindumathi A, Reddy BN (2011a) Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.)] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh state, India. Adv Biosci Biotech 2:275–286Google Scholar
  77. Hindumathi A, Reddy BN (2011b) Influence of arbuscular mycorrhizal fungi on plant growth and nutrition of Sorghum. In: Proccedings of II Asian PGPR Congress at Beijing, China, August 21–24Google Scholar
  78. Hindumathi A, Reddy BN (2011c) Dependency of Sorghum on arbuscular mycorrhizal colonization for growth and development. Indian J Mycol Plant Pathol 41:537–542Google Scholar
  79. Hindumathi A, Reddy BN (2012a) Synergistic effect of arbuscular mycorrhizal fungi and Rhizobium on the growth and charcoal rot of soybean [Glycine max (L.) Merr.]. World J Sci Technol 2:63–70Google Scholar
  80. Hindumathi A, Reddy BN (2012b) Systematics and occurrence of arbuscular mycorrhizal fungi. Lap Lambert Academic Publishing. GmbH & Co. K.G. Dudweiler Landstr, Saarbrücken, p 168Google Scholar
  81. Hindumathi A, Reddy BN (2015) Species diversity and population density of arbuscular mycorrhizal fungi associated with Carthamus tinctorius L. Rhizosphere Soils of Telangana, India. Mycorrhiza News 7:5–17Google Scholar
  82. Hindumathi A, Reddy BN (2016a) Dynamics of arbuscular mycorrhizal fungi in the rhizosphere soils of safflower from certain areas of Telangana. Indian Phytopath 69:67–73Google Scholar
  83. Hindumathi A, Reddy BN, Sabitha Rani A, Reddy AN (2016b) Associative effect of arbuscular mycorrhizal fungi and Rhizobium on plant growth and biological control of charcoal rot in green gram [Vigna radiata L. (Wilczek)]. In: Bhima B, Anjana Devi T, Taylor and Francis Group (eds) Microbial biotechnology: technological challenges and developmental trends. Apple Academic Press, Milton, pp 155–170CrossRefGoogle Scholar
  84. Ho I, Trappe JM (1979) Interaction of a VA-mycorrhizal fungus and a free-living nitrogen fixing bacterium on growth of tall fescue. In: Abstracts of the 4th North American Conference on Mycorrhizae. Fort Collins, ColoradoGoogle Scholar
  85. Ho I, Trappe JM (1980) Nitrate reductase activity of nonmycorrhizal Douglas fir rootlets and of some associated mycorrhizal fungi. Plant Soil 54:395–398CrossRefGoogle Scholar
  86. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungi accelerates decomposition and acquires nitrogen directly from organic matter. Nature 413:297–299PubMedCrossRefGoogle Scholar
  87. Isaac S (1992) Fungal − plant interactions. Chapman & Hall, LondonGoogle Scholar
  88. Jeffries P, Barea JM (2001) Arbuscular mycorrhiza – a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota, vol IX, Fungal associations. Springer-Verlag, Berlin, pp 95–113Google Scholar
  89. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16Google Scholar
  90. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. doi: 10.1111/j.1469-8137.2004.01130.x CrossRefGoogle Scholar
  91. Karthikeyan B, Pandiyarajan P, Santhana Krishnan P (1995) Effect of dual inoculation of phosphobacteria and VA mycorrhizal fungi on the growth of neem. In: Adholeya A, Singh S (eds) Mycorrhizal biofertilizers for the future, Proceedings of the 3rd national conference on mycorrhiza, New DelhiGoogle Scholar
  92. Kehri HK, Chandra S (1990) Mycorrhizal association in crops under sewage farming. J Ind Bot Soc 69:267–270Google Scholar
  93. Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87CrossRefGoogle Scholar
  94. Klironomos JN (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In Microbial Biosystems: New Frontiers. In: Bell CR, Brylinski M, Johnson-Green P (eds) Proceedings of the eighth international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp. 845–851Google Scholar
  95. Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118Google Scholar
  96. Kloepper JW (1996) Host specificity in microbe-microbe interactions. Bioscience 46:406–409CrossRefGoogle Scholar
  97. Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326Google Scholar
  98. Klyuchnikov AA, Kozherin PA (1990) Dynamics of Pseudomonas flourescens and Azospirillum brasilense population during the formation of vesicular arbuscular mycorrhiza. Microbiol 59:449–452Google Scholar
  99. Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol 148:511–517CrossRefGoogle Scholar
  100. Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163. doi: 10.1007/s00572-004-0307-4 PubMedCrossRefGoogle Scholar
  101. Krishna KR, Bagyaraj DJ (1982) Influence of VA mycorrhiza on growth and nutrition of Arachis hypogea. Legume Res 5:18–22Google Scholar
  102. Kucey RMB (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilising Penicillium bilaji strain and vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703PubMedPubMedCentralGoogle Scholar
  103. Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation- a meta-analysis. Plant Soil 374:523–537CrossRefGoogle Scholar
  104. Leifheit EF, Verbruggen E, Rillig MC (2015) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328CrossRefGoogle Scholar
  105. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathol 78:366–371Google Scholar
  106. Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Spec. Publ., Madison, pp 45–70Google Scholar
  107. Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1–26Google Scholar
  108. Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 345–365CrossRefGoogle Scholar
  109. Linderman RG, Call CA (1977) Enhanced rooting of woody plant cuttings by mycorrhizal fungi. J Am Soc Hortic Sci 102:629–632Google Scholar
  110. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147PubMedCrossRefGoogle Scholar
  111. Lynch JM (1990) The rhizosphere. John Wiley, New YorkGoogle Scholar
  112. Lynch JM, Whipps JM (1990) Substrate flow in rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  113. Manjunath A, Bagyaraj DJ (1984) Response of pigeonpea and cowpea to phosphate and dual inoculation in vesicular-arbuscular mycorrhiza and Rhizobium. Trop Agric 61:48–52Google Scholar
  114. Manjunath A, Mohan R, Bagyaraj DJ (1981) Interaction studies between Beijerinckia mobilis, Aspergillus niger and Glomus fasciculatus and their effects on growth of onion. New Phytol 87:723–727CrossRefGoogle Scholar
  115. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  116. Marschner P, Crowley DE, Higash RM (1997) Root exudation and physiological status of root colonizing fluorescent pseudomonad, in mycorrhizal and non-mycorrhizal pepper (Capsicum annum). Plant Soil 189:11–20CrossRefGoogle Scholar
  117. McAllister CB, Garcia-Romera I, Godeas A, Ocampo JA (1994) Interaction between Trichoderma koningii, Fusarium solani and Glomus mosseae: effect on plant growth, arbuscular mycorrhizas and the saprophytic population. Soil Biol Biochem 26:1363–1367CrossRefGoogle Scholar
  118. Mehrag AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349CrossRefGoogle Scholar
  119. Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178:126–135CrossRefGoogle Scholar
  120. Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196CrossRefGoogle Scholar
  121. Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature and identification. Mycotaxon 32:267–324Google Scholar
  122. Morton JB, Yarger JE, Wright SF (1990) Soil solution phosphorus requirement for nodulation and nitrogen fixation in mycorrhizal and nonmycorrhizal red clover (Trifolium pratense L.). Soil Biol Biochem 22:128–129CrossRefGoogle Scholar
  123. Mosse B (1962) The establishment of vesicular mycorrhizal under aseptic conditions. J Gen Microbiol 27:509–520PubMedCrossRefGoogle Scholar
  124. Mosse B, Stribley DP, Tacon L (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv Microbial Ecol 5:137–210CrossRefGoogle Scholar
  125. Mukerji KG, Bhattacharjee M, Mohan M (1982) Ecology of the Indian Endogonaceae. Angew Botanik 56:121–131Google Scholar
  126. Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate - solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fertil Soils 34:417–426Google Scholar
  127. Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20CrossRefGoogle Scholar
  128. Nicolson TH (1959) Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438CrossRefGoogle Scholar
  129. Oehl F, Sieverding E, Palenzuela F, Ineichen K, Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199. doi: 10.5598/imafungus.2011.02.02.10 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Okon Y (ed) (1994) Azospirillum plant associations. CRC Press, Boca RatonGoogle Scholar
  131. Parkinson D (1967) Soil microorganisms and plant roots. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, pp 449–478CrossRefGoogle Scholar
  132. Paula MA, Drguiaga S, Sequera JO, Dobereiner J (1992) Vesicular arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato. Biol Fertil Soils 14:61–66CrossRefGoogle Scholar
  133. Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  134. Pozo MJ, Slezack-Deschaumes S, Dumas-Gaudot E (2002) Plant defense responses induced by arbuscular mycorrhizal fungi. In: Gianinazzi S, Scüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser Verlag, Basel, pp 103–111CrossRefGoogle Scholar
  135. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2008) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  136. Raj J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with vesicular arbuscular mycorrhizas and a phosphate dissolving bacterium on plant growth and 32P uptake. Soil Biol Biochem 13:105–108CrossRefGoogle Scholar
  137. Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122CrossRefGoogle Scholar
  138. Reddy BN, Hindumathi A, Raghavender CR (2006a) Influence of Physico-chemical factors on arbuscular mycorrhizal population associated with sorghum. Indian J Bot Res 2:75–82Google Scholar
  139. Reddy BN, Sreevani A, Raghavender CR (2006b) Association of AM fungi in three solanaceous vegetable crops. Indian J Mycol Plant Pathol 36:52–56Google Scholar
  140. Reddy BN, Raghavender CR, Sreevani A (2006c) Approach for enhancing mycorrhiza-mediated disease resistance of tomato damping-off. Indian Phytopathol 59:299–304Google Scholar
  141. Reddy BN, Hindumathi A, Raghavender CR (2007) Occurrence and systematics of arbuscular mycorrhizal fungi associated with sorghum. J Phytol Res 20:11–22Google Scholar
  142. Reddy BN, Saritha K, Hindumathi A (2016) Potential use of Trichoderma species as promising plant growth stimulator in Tomato (Lycopersicum esculantum L.). In: Bhima B, Anjana Devi T, Taylor and Francis Group (eds) Microbial biotechnology: technological challenges and developmental trends. Apple Academic Press, Milton, pp 185–198CrossRefGoogle Scholar
  143. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  144. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388PubMedCrossRefGoogle Scholar
  145. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679PubMedPubMedCentralCrossRefGoogle Scholar
  146. Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583PubMedCrossRefGoogle Scholar
  147. Sanjuan J, Olivares J (1991) Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Mol Plant Micr Interact 4:365–369CrossRefGoogle Scholar
  148. Satya Vani M (2012) AM fungi as bio-fertilizer and bio-control agent of Verticillium wilt of some solanaceous crops. PhD thesis, Department of Botany, Osmania University, Hyderabad, IndiaGoogle Scholar
  149. Satya Vani M, Hindumathi A, Reddy BN (2014a) Influence of arbuscular mycorrhizal fungi on plant growth promotion and biological control of Verticillium wilt of Tomato (Lycopersicum esculantum). Inter J Pharm and Bio Sci 5:1000–1009Google Scholar
  150. Satya Vani M, Hindumathi A, Reddy BN (2014b) Arbuscular myorrhizal fungi associated with rhizosphere soil of Brinjal cultivated in Andhra Pradesh, India. Int J Curr Microbiol App Sci 3:519–529Google Scholar
  151. Satya Vani M, Hindumathi A, Reddy BN (2015) Application of arbuscular mycorrhizal fungi to improve plant growth in Solanum melongena L. Ann Biol Res 6:21–28 http://scholarsresearchlibrary.com/archive.html
  152. Saxena AK, Tilak KVBR (1997) Interaction of soil microorganisms with vesicular arbuscular mycorrhiza. In: Tiwari JP, Saxena G, Tewari I, Mittal N, Chamola BP (eds) New approaches in microbial ecology. Aditya Books Pvt. Ltd, New DelhiGoogle Scholar
  153. Schenck NC (1987) VA mycorrhizal fungi and the control of fungal root disease. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 179–191Google Scholar
  154. Schüßler A, Schwarzott D, Walker C (2001) A new phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  155. Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073CrossRefGoogle Scholar
  156. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  157. Singh CS (1995) Impact of nitrogen fixing and phosphate-solubilizing bacteria on mycorrhizal root colonization and spore production. In: Mycorrhizae: biofertilizers for the future, Proceedings of the 3rd national conference on Mycorrhiza, New DelhiGoogle Scholar
  158. Smith GS (1988) The role of phosphorus nutrition in interactions of vesicular–arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathol 78:371–374Google Scholar
  159. Smith DE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  160. Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer Academic Publishers, Dordrecht, pp 103–113Google Scholar
  161. Sreevani A, Reddy BN (2005) Arbuscular mycorrhizal fungi with tomato (Lycopersicum esculentum Mill.) as influenced by soil physico chemical properties. Philipp J Sci 133:115–129Google Scholar
  162. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in absence of host roots. Mycol Res 100:328–332CrossRefGoogle Scholar
  163. Steinberg PD, Rillig MC (2003) Differential decomposition of arbuscular mycorrhiza fungal hyphae and glomalin. Soil Biol Biochem 35:191–194CrossRefGoogle Scholar
  164. Suresh CK, Bagyaraj DJ (2002) Mycorrhiza-microbe interface: effect on rhizosphere. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhizae. Scientific Publishers, Enfield, pp 7–28Google Scholar
  165. Sylvia DM, Fuhrmann JJ, Hartel PT, Zuberer E (1998) Principles and applications of soil microbiology. Prentice Hall, London 550 pGoogle Scholar
  166. Sylvia DM, Alagely AK, Kane ME, Philman NL (2003) Compatible host/mycorrhizal fungus combinations for micropropagated sea oats. I. Field sampling and green house evaluations. Mycorrhiza 13:177–183PubMedCrossRefGoogle Scholar
  167. Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312CrossRefGoogle Scholar
  168. Tinker PB (1984) The role of microorgansims in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil 76:77–91CrossRefGoogle Scholar
  169. Tobar RM, Azcón-Aguilar C, Sanjuán J, Barea JM (1996) Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Appl Soil Ecol 4:15–21CrossRefGoogle Scholar
  170. Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS lett 254:34–40CrossRefGoogle Scholar
  171. Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412PubMedPubMedCentralGoogle Scholar
  172. Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233–240CrossRefGoogle Scholar
  173. Van der Heijden MGA (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171PubMedCrossRefGoogle Scholar
  174. Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  175. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck M, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564PubMedCrossRefGoogle Scholar
  176. Vasantha Krishna M, Bagyaraj DJ, Nirmalnath PJ (1994) Response of Casuarina equisetifolia to inoculation with Glomus fasciculatum and/or Frankia. For Ecol Manage 68:399–402CrossRefGoogle Scholar
  177. Vázquez MM, Cesar S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272CrossRefGoogle Scholar
  178. Vierheilig H, Scheweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404Google Scholar
  179. Volpin H, Kapulnik Y (1994) Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118Google Scholar
  180. Vosátka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251CrossRefGoogle Scholar
  181. Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49CrossRefGoogle Scholar
  182. Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371CrossRefGoogle Scholar
  183. Weller DM, Thomashow LS (1994) Current challanges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs. VCH, Weinheim, pp 1–18CrossRefGoogle Scholar
  184. Werner D (1998) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interfaces. Marcel Dekker Inc., New YorkGoogle Scholar
  185. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  186. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Mycology and Plant Pathology Laboratory, Department of BotanyOsmania UniversityHyderabadIndia

Personalised recommendations