Advertisement

Role of Beneficial Fungi in Sustainable Agricultural Systems

  • Mehrnaz HatamiEmail author
  • Fereshteh Ahangarani
Chapter

Abstract

Sustainable agriculture is a farming technique on the basis of knowledge of ecosystem services, the study of relationships/interactions between organisms and their physical environment. In sustainable agricultural systems, the inhabitant soil microflora is more crucial for ecosystem processes including nutrient availability and pest/disease suppression.

The rising demand for environmental friendly, organic, and sustainable agricultural practices are driving the application of fertilizers based on beneficial biological products. The use of beneficial fungi in agriculture sector is potentially useful for improved plant health and growth, water uptake, nutrient availability, stress tolerance, and biocontrol. Fungi also play a fundamental role in multifarious physiological processes including mineral and water uptake, photosynthesis, stomatal movement, and biosynthesis of compounds termed biostimulants, auxins, lignan, and ethylene to enhance the ability of plants to establish and cope environmental stresses such as drought, salinity, heat, cold, and heavy metals. This chapter describes the mechanisms underlying beneficial impacts of fungi on growth promotion of the host plant.

Keywords

Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Fungus Trichoderma Harzianum Induce Systemic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:232–238CrossRefGoogle Scholar
  2. Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J 2012:1–8CrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altomare C, Norvell W, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  5. Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N (2013) A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 70:403–410PubMedCrossRefGoogle Scholar
  6. Arnold AE, Engelbrecht BMJ (2007) Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecol 23:369–372CrossRefGoogle Scholar
  7. Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041PubMedPubMedCentralCrossRefGoogle Scholar
  8. Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42CrossRefGoogle Scholar
  9. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  10. Babalola O (2010) Ethylene quantification in three rhizobacterial isolates from Striga hermonthica-infested maize and sorghum. Egypt J Biol 12:1–5Google Scholar
  11. Barea J, Ferrol N, Azcon-Aguilar C, Azcon R (2008) Mycorrhizal symbiosis. In: White P, Hammond J (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 143–163CrossRefGoogle Scholar
  12. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 6:1–13CrossRefGoogle Scholar
  13. Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  14. Bolwerk A, Lagopodi A, Wijfjes A, Lamers G, Chin-AWoeng TC, Lugtenberg B, Bloemberg G (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 16:983–993PubMedCrossRefGoogle Scholar
  15. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531Google Scholar
  16. Borde M, Dudhane M, Jite PK (2009) Role of bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not Bot Horti Agrobot Cluj 37:124–128Google Scholar
  17. Borie F, Rubio R, Morales A, Cornejo P (2010) Arbuscular mycorrhizae in agricultural and forest ecosystems in Chile. J Soil Sci Plant Nutr 10:204–223CrossRefGoogle Scholar
  18. Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefGoogle Scholar
  19. Broekaert W, Delaure S, De Bolle M, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416PubMedCrossRefGoogle Scholar
  20. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  21. Caron M (1989) Potential use of mycorrhizae in control of soilborne diseases. Can J Plant Pathol 11:177–179CrossRefGoogle Scholar
  22. Carrillo-Castaneda G, Juarez Munos J, Peralta-Videab JR, Gomezb E, Tiemannb KJ, Duarte-Gardeac M, Gardea-Torresdeyb JL (2002) Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res 6:391–399CrossRefGoogle Scholar
  23. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedCrossRefGoogle Scholar
  24. Chaverri P, Gazis RO (2010) Perisporiopsis lateritia, a new species on decaying leaves of Hevea spp. from the Amazon basin in Peru. Mycotaxon 113:163–169CrossRefGoogle Scholar
  25. Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift K, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker P, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide- producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11:1069–1077CrossRefGoogle Scholar
  26. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523CrossRefGoogle Scholar
  27. Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16:671–677CrossRefGoogle Scholar
  28. Clark R, Zeto S (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902CrossRefGoogle Scholar
  29. Cohen R, Persky L, Hadar Y (2002) Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechnol 58:582–594PubMedCrossRefGoogle Scholar
  30. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  31. Contreras-Cornejo H-A, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Am Soc Plant Biol 149:1579–1592Google Scholar
  32. Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Ecol 36:203–209PubMedCrossRefGoogle Scholar
  33. Das A, Kamal S, Shakil NK, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:103e112CrossRefGoogle Scholar
  34. Das A, Prasad R, Srivastava RB, Deshmukh S, Rai MK, Varma A (2013) Cocultivation of Piriformospora indica with medicinal plants: case studies. Soil Biol 33:149–171CrossRefGoogle Scholar
  35. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  36. Egamberdiyeva D, Hoflich G (2002) Root colonization and growth promotion of winter wheat and pea by Cellulomonas spp. at different temperatures. Plant Growth Regul 38:219–224CrossRefGoogle Scholar
  37. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2005) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Int J Syst Evol Microbiol 55:1233–1237CrossRefGoogle Scholar
  38. Fernando W, Nakkeeran S, Zhang Y (2006) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant disease. In: Siddiqui Z (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 67–109CrossRefGoogle Scholar
  39. Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533CrossRefGoogle Scholar
  40. Fohse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 132:261–272CrossRefGoogle Scholar
  41. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S (1994) Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Daniels M, Downic JA, Osbourn AE (eds) Advances in molecular genetics of plant–microbe interactions. Kluwer, Dordrecht, pp 179–186CrossRefGoogle Scholar
  43. Glick B (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 252:1–7CrossRefGoogle Scholar
  44. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  45. Grichko V, Glick B (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biotechnol 39:11–17CrossRefGoogle Scholar
  46. Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Vietnam. J ISSAAS 16:17–21Google Scholar
  47. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  48. Haichar F, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230PubMedCrossRefGoogle Scholar
  49. Harman G, Mastouri F (2010) The role of Trichoderma in crop management systems. Phytopathology 100:165Google Scholar
  50. Hiltner L (1904) € Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Ber€uksichtigung der Gr€und€ungung und Brache (On recent insights and problems in the area of soil bacteriology under special consideration of the use of green manure and fallowing). Arb Dtsch Landwirt Ges 98:59–78Google Scholar
  51. Ho M, Rosas J, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  52. Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic matter. Nature 413:297–299PubMedCrossRefGoogle Scholar
  53. Hoorman JJ 2011 The role of soil fungus (report no. SAG-14-11). Ohio State University, Columbus, Ohio, USA. http://ohioline.osu.edu/sag-fact/
  54. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13PubMedCrossRefGoogle Scholar
  55. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)–C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  56. Johnsson L, Hokeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur J Plant Pathol 104:701–711CrossRefGoogle Scholar
  57. Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50Google Scholar
  58. Kapoor R, Mukerji KG (1998) Microbial interactions in mycorrhizosphere of Anethum graveolens L. Phytomorphology 48:383–389Google Scholar
  59. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207PubMedCrossRefGoogle Scholar
  60. Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, Wettstein DV, Kogel KH, Schafer P (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 0035502, http://www.plosone.org/article/info:doi/  10.1371/journal.pone
  61. Kim H, Park J, Choi SW, Choi KH, Lee G, Ban S, Lee C, Kim CS (2003) Isolation and characterization of Bacillus strains for biological control. J Microbiol 41(3):196–201Google Scholar
  62. Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hokeberg M, Tahvonen R, Teperi E, Sundheim L, Henriksen B (1997) Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol 103:775–784CrossRefGoogle Scholar
  63. Knudsen IMB, Debosz K, Hockenhull J, Jensen DF, Elmholt S (1999) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72CrossRefGoogle Scholar
  64. Kumar M, Yadav V, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6:723–725PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel C, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 15:172–179PubMedCrossRefGoogle Scholar
  66. Lanteigne C, Gadkar V, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102(10):967–973PubMedCrossRefGoogle Scholar
  67. Leeman M, DenOuden FM, VanPelt JA, Cornelissen C, MatamalaGarros A, Bakker P, Schippers B (1996) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31CrossRefGoogle Scholar
  68. Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavaletto M (2012) Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. PLoS One 7:4–25CrossRefGoogle Scholar
  69. Loper J, Henkels M (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363PubMedPubMedCentralGoogle Scholar
  70. Lopez-Roez JA, Pozo MJ (2013) Chemical signalling in the arbuscular mycorrhizal symbiosis. In: Aroca R (ed) Progress in symbiotic endophytes. Springer, Dordrecht, pp 215–232CrossRefGoogle Scholar
  71. MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442CrossRefGoogle Scholar
  72. Martinez-Viveros O, Jorquera M, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319CrossRefGoogle Scholar
  73. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  74. Miller S, Beed F, Harmon CL (2009) Plant disease diagnostic capabilities and networks. Annu Rev Phytopathol 47:15–38PubMedCrossRefGoogle Scholar
  75. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mirza M, Mehnaz S, Normand P, Prigent-Combaret C, Moenne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170CrossRefGoogle Scholar
  77. Muthukumarasamy R, Kang U, Park KD, Jeon W, Park CY, Cho Y, Kwon S, Song J, Roh D, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short term inoculation effect on rice plants. J Appl Microbiol 102:981–991PubMedGoogle Scholar
  78. Naznin H, Kiyohara D, Kimura M, Miyazawa M, Shimiz M, Hyakumachi M (2014) Systemic resistance induced by volatile organic compounds emitted by plant-growth promoting fungi in Arabidopsis thaliana. PLoS One 9(1)Google Scholar
  79. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000CrossRefGoogle Scholar
  80. Niemira BA, Hammerschmidt R, Safir GR (1996) Postharvest suppression of potato dry rot (Fusarium sambucinum) in prenuclear minitubers by arbuscular mycorrhizal fungal inoculum. Am Potato J 73:509–515CrossRefGoogle Scholar
  81. Oelmuller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17CrossRefGoogle Scholar
  82. O’Sullivan D, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedPubMedCentralGoogle Scholar
  83. Parihar J, Tiwari CK, Ayachi A, Verma RK (2012) Biodegradation of cellulose by wood decaying fungi. J Appl Sci Environ Sanit 7:209–214Google Scholar
  84. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358CrossRefGoogle Scholar
  85. Phillips RP, Meier IC, Bernhardt ES, Grandy S, Wickings K, Finzi AC (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049PubMedCrossRefGoogle Scholar
  86. Pierik R, Tholen D, Poorter H, Visser E, Voesenek LA (2006) The Janus factor of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183PubMedCrossRefGoogle Scholar
  87. Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defences against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Heidelberg, pp 137–149Google Scholar
  88. Puppi G, Azcon R, H€oflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, pp 201–215CrossRefGoogle Scholar
  89. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GL, Koslowski TT (eds) Ectomycorrhizae. Academic, New York, pp 299–343CrossRefGoogle Scholar
  90. Ramos-Zapata JA, Marrufo-Zapata D, Guadarrama P, Carrillo-Sánchez L, Hernández Cuevas L, Caamal-Maldonado A (2012) Impact of weed control on arbuscular mycorrhizal fungi in a tropical agroecosystem: a long-term experiment. Mycorrhiza 22:653–661PubMedCrossRefGoogle Scholar
  91. Read J, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance? New Phytol 157:475–492Google Scholar
  92. Reeve J, Schadt C, Carpenter-Boggs L, Kang S, Zhou J, Reganold JP (2010) Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J 4:1099–1107PubMedCrossRefGoogle Scholar
  93. Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561CrossRefGoogle Scholar
  94. Ribaudo C, Krumpholz E, Cassan F, Bottini R, Cantore M, Cura JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25:175–185CrossRefGoogle Scholar
  95. Richardson A, Simpson R (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996PubMedPubMedCentralCrossRefGoogle Scholar
  96. Richardson A, Barea J, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  97. Riefler M, Novak O, Strnad M, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development and cytokinin metabolism. Plant Cell 18(1):40–54PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  99. Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  100. Serfling A, Wirsel SG, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531PubMedCrossRefGoogle Scholar
  101. Sharma A, Johri B (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248PubMedCrossRefGoogle Scholar
  102. Siddiqui I, Shaukat S, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHAO in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650CrossRefGoogle Scholar
  103. Singh CS (1992) Mass inoculum production of vesicular-arbuscular (VA) mycorrhizae. 2. Impact of N2-fixing and P-solubilizing bacterial inoculation on VA-mycorrhiza. Zentralblatt F€ur Mikrobiologie 147:503–508Google Scholar
  104. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191PubMedPubMedCentralCrossRefGoogle Scholar
  105. Singh NK, Chaudhary FK, Patel DB (2013) Effectiveness of Azotobacter bioinoculant for wheat grown under dryland conditions. J Environ Biol 34:927–932PubMedGoogle Scholar
  106. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, 605 ppGoogle Scholar
  107. Spaepen S, Vanderleyden J, Remans R (2006) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448CrossRefGoogle Scholar
  108. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1997) Inhibition of Fusarium oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices. Can J Bot 75:998–1005CrossRefGoogle Scholar
  109. Suman A, Gaur A, Shrivastava A, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47:155–162CrossRefGoogle Scholar
  110. Tsavkelova E, Klimova S, Cherdyntseva A, Netrusov I (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126CrossRefGoogle Scholar
  111. Tsimilli-Michael M, Strasser RJ (2013) Biophysical phenomics: evaluation of the impact of mycorrhization with Piriformospora indica. Soil Biol 33:173–190CrossRefGoogle Scholar
  112. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564PubMedCrossRefGoogle Scholar
  113. Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  114. Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358PubMedPubMedCentralGoogle Scholar
  115. Wakelin S, Warren R, Harvey P, Ryder M (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  116. Wells JM, Boddy L, Donnelly DP (1998) Wood decay and phosphorus translocation by the cord forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytol 138:607–617CrossRefGoogle Scholar
  117. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedPubMedCentralCrossRefGoogle Scholar
  118. Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  119. Wijesinghe D, John E, Beurskens S, Hutchings M (2001) Root system size and precision in nutrient foraging: responses to spatial patterns of nutrient supply in six herbaceous species. J Ecol 89:972–983CrossRefGoogle Scholar
  120. Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425PubMedCrossRefGoogle Scholar
  121. Xian-Can Z, Feng-Bin S, Hong-Wen X (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137CrossRefGoogle Scholar
  122. Yaseen T, Burni T, Hussain F (2011) Effect of Arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afr J Biotechnol 10:8593–8598CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
  2. 2.Master of Science of Weed Identification and ManagementArakIran

Personalised recommendations