Advertisement

Biofertilizers: A Timely Approach for Sustainable Agriculture

  • Supriya Tomer
  • Deep Chandra Suyal
  • Reeta GoelEmail author
Chapter

Abstract

Chemical fertilizers are extensively being used all around the globe in order to get the high yield of the crops. However, their indiscriminate use has imposed detrimental impact on soil animal health as well. A better alternative of these chemicals might be to exploit the microbial capabilities to be served as biofertilizer. Crop growth and yield are closely related to the soil microbiota, especially those in close proximity to plant roots, generally termed as “rhizosphere.” These microbes are known to play a number of vital roles in soil fertility, crop productivity, and production in agriculture and are the best supplement of chemical fertilizers.

Keywords

Microbial Community Arbuscular Mycorrhizal Fungus Root Exudate Endophytic Bacterium Gluconic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work mentioned in this chapter from author group was supported by the National Bureau of Agriculturally Important Microorganisms, India (NBAIM/ICAR), grant to R. G.

References

  1. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  2. Ambrose KV, Tian Z, Wang Y et al (2015) Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Sci Rep 5:10939. doi: 10.1038/srep10939 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arkhipova TN, Prinsen E, Veselov SU et al (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  4. Bae H, Sicher RC, Kim MS et al (2009) The beneficial endophyte Trichoderma hamatum isolate DS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci India 108(7):1288–1293Google Scholar
  6. Bailey BA, Stream MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113:1365–1376CrossRefPubMedGoogle Scholar
  7. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350CrossRefPubMedGoogle Scholar
  8. Bidondo LF, Silvani V, Colombo R (2011) Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biol Biochem 43(9):1866–1872Google Scholar
  9. Board on Agriculture and Natural Resource, National Research Council (2015) A framework for assessing effects of the food system. The National Academies Press. doi:10.1017226/18846Google Scholar
  10. Breitbarth E, Oschlies A, LaRoche J et al (2007) Physiological constraints on the global distribution of Trichodesmium-effect of temperature on diazotrophy. Biogeosciences 4(1):53–61CrossRefGoogle Scholar
  11. Brito JP, Ramada MH, de Magalhaes MT et al (2014) Peptaibols from Trichoderma asperellum TR356 strain isolated from Brazilian soil. Springerplus 3:600. doi: 10.1186/2193-1801-3-600 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bruto M, Prigent-Combaret C, Muller D et al (2015) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related proteobacteria. Sci Rep 4:6261. doi: 10.1038/srep06261 CrossRefGoogle Scholar
  13. Cassan F, Perrig D, Sgroy V et al (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35Google Scholar
  14. Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50(7):786–798. doi: 10.1111/j.1744-7909.2008.00700 CrossRefPubMedGoogle Scholar
  15. Colo J, HajnaL-Jafari TI, Duric S et al (2014) Plant growth promotion rhizobacteria in onion production. Pol J Microbiol 63(1):83–88PubMedGoogle Scholar
  16. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  17. Daniel JFS, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141CrossRefPubMedGoogle Scholar
  18. Desnoues N, Lin M, Guo X et al (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149(8):2251–2262CrossRefPubMedGoogle Scholar
  19. Eckford R, Cook FD, Saul D et al (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68(10):5181–5185CrossRefPubMedPubMedCentralGoogle Scholar
  20. Einsle O, Tezcan FA, Andrade SL et al (2002) Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297(5587):1696–1700CrossRefPubMedGoogle Scholar
  21. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58(3):352–386PubMedPubMedCentralGoogle Scholar
  22. Giles SS, SoukupAA LC et al (2011) Cryptic Aspergillus nidulans antimicrobials. Appl Environ Microbiol 77:3669–3675CrossRefPubMedPubMedCentralGoogle Scholar
  23. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica. http://dx.doi.org/10.6064/2012/963401 Google Scholar
  24. Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1- carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett. doi: 10.1007/s10529-014-1458-9 PubMedGoogle Scholar
  25. Gulati A, Vyas P, Rahi P et al (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58(4):371–377Google Scholar
  26. Han Y, Wang R, Yang Z et al (2015) 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128CrossRefPubMedGoogle Scholar
  27. Indiragandhi P, Anandham R, Madhaiyan M et al (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333CrossRefPubMedGoogle Scholar
  28. Kang BG, Kim WT, Yun HS et al (2010) Chang use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  29. Keiluweit M, Bougoure JJ, Nico PS et al (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595. doi: 10.1038/nclimate2580 CrossRefGoogle Scholar
  30. Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19CrossRefGoogle Scholar
  31. Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74:6416–6420CrossRefPubMedGoogle Scholar
  32. Kudoyarova GR, Melentiev AI, Martynenko EV et al (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291CrossRefPubMedGoogle Scholar
  33. Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii Strain MP1 against Native Cicer arietinum L., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol 8(50):3931–3943Google Scholar
  34. Lagos ML, Maruyama F, Nannipieri P et al (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini–review. J Soil Sci Plant Nutr 15(2):504–523Google Scholar
  35. Lei Z, Ya-qing Z (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597CrossRefGoogle Scholar
  36. Liao Y, WuWL MFQ et al (2015) Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 12:1403–1413CrossRefGoogle Scholar
  37. Lucas JA, Solano BR, Montes F et al (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crop Res 114(3):404–410Google Scholar
  38. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  39. Magnucka EG, Pietr SJ (2015) Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiol Res 181:112–119CrossRefPubMedGoogle Scholar
  40. Mukherjee PK, Buensanteai N, Moran-Diez ME et al (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in induced systemic resistance response in maize. Microbiology 158:155–165CrossRefPubMedGoogle Scholar
  41. Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. doi: 10.3389/fmicb.2015.00745 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pandey A (2009) Bacillus subtilis NRRL B‐30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil 172(1):134–139Google Scholar
  43. Rajkumar M, Ae N, Prasad MN et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefPubMedGoogle Scholar
  44. Rana A, Joshi M, Prasanna R (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126Google Scholar
  45. Rajeshkannan V, Thangapandian V, Muthukumar T et al (2008) Influence of bioinoculants on growth, nutrient uptake and yield of green gram [Vigna radiata (L.) Wilczek]. J Sustain Agr 31(3):85–109Google Scholar
  46. Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of Pseudomonas putida 710A and Commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928CrossRefGoogle Scholar
  47. Regato SR (2008) Mediterranean mountains in a changing world: guidelines for developing action plans. https://cmsdata.iucn.org/downloads/mediterranean_mountains.pdf. Accessed 25 Apr 2016
  48. Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7:920–924CrossRefGoogle Scholar
  49. Rodríguez-Diaz M, Lebbe L, Rodelas B et al (2005) Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int J Syst Evol Microbiol 55:2093–2099CrossRefPubMedGoogle Scholar
  50. Roychowdhury D, PauL M, Banerjee SK (2014) A review on the effects of biofertilizers and biopesticides on rice and tea cultivation and productivity. Int J Eng Sci Technol 2(8):96–106Google Scholar
  51. Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111CrossRefPubMedGoogle Scholar
  52. Shi M, Chen L, Wang XW et al (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175CrossRefPubMedGoogle Scholar
  53. Shukla A, Dhauni N, Suyal DC, Kumar S, Goel R (2015) Comparative plant growth promoting potential of psychrotolerant diazotrophs, Pseudomonas sp. JJS2 and Enterobacter sp. AAB8 against native Cajanus cajan (L.) and Eleusine coracana (L.). Afr J Microbiol 9(20):1371–1375CrossRefGoogle Scholar
  54. Simon Z, Mtei K, Gessesse A et al (2014) Isolation and characterization of nitrogen fixing rhizobia from cultivated and uncultivated soils of Northern Tanzania. Am J Plant Sci 5:4050–4067CrossRefGoogle Scholar
  55. Singh AV, Chandra R, Goel R et al (2012) Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Arch Agron Soil Sci 59(5):641–651CrossRefGoogle Scholar
  56. Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. The MIT Press, Cambridge, MAGoogle Scholar
  57. Soni R, Shaluja B, Goel R (2010) Bacterial community analysis using temporal temperature gradient gel electrophoresis (TTGE) of 16S rDNA PCR products of soil metagenome. Ekologija 56(3–4):94–98CrossRefGoogle Scholar
  58. Soni R, Suyal DC, Agrawal K, Yadav A, Souche Y, Goel R (2015) Differential proteomic analysis of Himalayan psychrotolerant diazotroph Pseudomonas palleroniana N26 Strain under low temperature diazotrophic conditions. CryoLetters 36(2):74–82PubMedGoogle Scholar
  59. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4). doi: 10.1101/cshperspect.a001438 Google Scholar
  60. Suyal DC, Shukla A, Goel R (2014a) Growth promotory potential of the psychrophilic diazotroph Pseudmonas migulae S10724 against Native Vigna radiata (L.) Wilczek. 3 Biotechnol 4:665–668Google Scholar
  61. Suyal DC, Yadav A, Shouche Y, Goel R (2014b) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotechnol. doi  10.1007/s13205-014-0238-5
  62. Suyal DC, Yadav A, Shouche Y, Goel R (2015) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris L.) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313CrossRefGoogle Scholar
  63. Swapna AL (2013) Development of biofertilizers and its future perspective. J Pharm 4:327–332Google Scholar
  64. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M et al (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Exp 4(1):26. doi: 10.1186/s13568-014-0026-y
  65. Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19(2):157–163Google Scholar
  66. Ullah I, Khan AR, Jung BK et al (2014) Gibberellins synthesized by the entomopathogenic bacterium, Photorhabdus temperata M1021 as one of the factors of rice plant growth promotion. J Plant Interact 9(1):775–782CrossRefGoogle Scholar
  67. United Nations (2013) World population prospects: the 2012 revision, highlights and advance tables. Working paper no. ESA/P/WP. 228. http://www.un.org/en/development/desa/population. Accessed 22 Apr 2016
  68. Upadhyay SK, Singh JS, Saxena AK et al (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611Google Scholar
  69. Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiata L. Wilczek). Res J Microbiol 3(2):62–72CrossRefGoogle Scholar
  70. Vyas P, Joshi R, Sharma KC et al (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growthpromotion potential. J Microbiol Biotechnol 20(12):1724–1734Google Scholar
  71. Wallner A, Blatzer M, Schrettl M et al (2009) Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigates. Appl Environ Microbiol 75(12):4194–4196CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Tang S, Jin H (2015) Effect of glucose, root exudates and N forms in mycorrhizal symbiosis using Rhizophagus intraradices. J Soil Sci Plant Nutr 15(3):726–736Google Scholar
  73. Waqas M, Khan AL, Kang S-M, Kim Y-H, Lee I-J (2014) Phytohormone producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils 50(7):1155–1167CrossRefGoogle Scholar
  74. Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedGoogle Scholar
  75. Zahir ZA, Ghani U, Naveed M et al (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424CrossRefPubMedGoogle Scholar
  76. Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092CrossRefGoogle Scholar
  77. Zhang J, Meng L, Cao Y et al (2014) The role of wheat germ agglutinin in the attachment of Pseudomonas sp. WS32 to wheat root. J Microbiol 52(12):1020–1024CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Supriya Tomer
    • 1
  • Deep Chandra Suyal
    • 1
  • Reeta Goel
    • 1
    Email author
  1. 1.Department of MicrobologyCollege of Basic Science and Humanities, G.B.P.U.A&TPantnagarIndia

Personalised recommendations