Advertisement

Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress

  • Anjney Sharma
  • Anukool Vaishnav
  • Hena Jamali
  • Anchal Kumar Srivastava
  • Anil Kumar Saxena
  • Alok Kumar SrivastavaEmail author
Chapter

Abstract

Salinity is one of the most critical environmental constraints which cause soil degradation and hampering agricultural production throughout the world. In the present time, a total 831 million hectares of land is affected by salinity. The salinity affects the processes in plant life from its germination to maturation stage. Regulation of phytohormones, root/shoot development, nutrient uptake, and photosynthesis are severely affected by salt stress and ultimately reduce agricultural productions. The loss of agriculture production due to salinization is one of the major constraints to feed to the growing population. High salt levels in the soil limit its agroecological potential and represent a considerable ecological and socioeconomic threat to sustainable development. In this context, the use of halophilic bacteria has been gained a great interest in eco-friendly and sustainable agriculture approach with emphasis on plant growth promotion in salt stress. This chapter paid attention to the use of halophilic bacteria in agriculture system toward producing salt stress-tolerant crops and an understanding the mechanisms of plant and halophilic bacterial interaction. Halophilic bacteria help plants to cope with salinity by supporting them in the restoration of essential activities such as nutrient uptake efficiency, ROS scavenging, and phytohormone production. The second part of this chapter describes different enzymatic potentials of halophilic bacteria and their uses in food processing, industrial bioconversions, and bioremediation. After that, a brief outline of characterization of halophilic bacteria by phenotypic, biochemical, chemotaxonomy, and molecular methods is discussed. The exploitation of halophilic bacteria in agriculture is required for environment and human welfare.

Keywords

Bioremediation Industrial enzymes Halobacteria Salinity Sustainable agriculture 

References

  1. Aamir M, Aslam A, Khan MY et al (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:17–22Google Scholar
  2. Abdeljabbar H, Cayol JL, Hania WB, Boudabous A, Sadfi N, Fardeau ML (2013) Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int J Syst Evol Microbiol 63(6):2069–2074PubMedCrossRefGoogle Scholar
  3. Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J Plant Interact 9(1):460–467CrossRefGoogle Scholar
  4. Ahn J, Park JW, McConnell JA, Ahn YB, Häggblom MM (2011) Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the sponge Chondrilla nucula. Int J Syst Evol Microbiol 61(4):961–964PubMedCrossRefGoogle Scholar
  5. Alizadeh O, Parsaeimehr A (2011) The influence of plant growth promoting rhizobacteria (PGPR) on the reduction of abiotic stresses in crops. Extrem Life Biospeol Astrol 3:93–99Google Scholar
  6. Aljohny BO (2015) Halophilic bacterium – a review of new studies. Biosci Biotechnol Res Asia 12(3):2061–2069CrossRefGoogle Scholar
  7. Amoozegar MA, Malekzadeh F, Malik KA (2003). Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. J Microbiol Methods 52(3):353–359Google Scholar
  8. Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA‐2. J Basic Microbiol 48(3):160–167PubMedCrossRefGoogle Scholar
  9. Amoozegar MA, Makhdoumi-Kakhki A, Ramezani M, Nikou MM, Fazeli SAS, Schumann P, Ventosa A (2013a) Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae. Int J Syst Evol Microbiol 63(4):1562–1567PubMedCrossRefGoogle Scholar
  10. Amoozegar MA, Bagheri M, Didari M, Fazeli SAS, Schumann P, Sánchez-Porro C, Ventosa A (2013b) Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 63(1):345–351PubMedCrossRefGoogle Scholar
  11. Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P, Nikou MM, Sánchez- Porro C, Ventosa A (2014) Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.058545-0 Google Scholar
  12. Babu J, Pramod WR, George T (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470CrossRefGoogle Scholar
  13. Baldani JL, Reis VM, Baldani VLD, Dobereiner J (2000) A brief story of nitrogen fixation in sugarcane – reasons for success in Brazil. Funct Plant Biol 29:417–423CrossRefGoogle Scholar
  14. Bano A, Fatima M (2009) Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  15. Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2009) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14CrossRefGoogle Scholar
  16. Barr JG, Emmerson AM, Hogg GM, Smyth E (1989) API-20NE and sensititre autoidentification systems for identifying Pseudomonas spp. J Clin Pathol 42:1113–1114PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342PubMedCrossRefGoogle Scholar
  18. Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383PubMedCrossRefGoogle Scholar
  19. Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620PubMedCrossRefGoogle Scholar
  20. Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28PubMedCrossRefGoogle Scholar
  21. Blum JS, Kulp TR, Han S, Lanoil B, Saltikov CW, Stolz JF, Miller LG, Oremland RS (2012) Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate-and arsenate- respiring bacterium from Searles Lake, California. Extremophiles 16(5):727–742PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Plant Sci 164:77–84CrossRefGoogle Scholar
  23. Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25CrossRefGoogle Scholar
  24. Cardinale M, Ratering S, Suarez C, Montoya AMZ, Geissler-Plaum R, Schnell S (2014) Modulation rhizosphere microbiota to mitigate salt stress of barley plants. In: Microbial ecology and application of inoculants in biocontrol – Indo-German Workshop. Book of Abstracts, IARI, New Delhi, pp 35–37Google Scholar
  25. Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35(2):73–80Google Scholar
  26. Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by salt-tolerant bacterium. Recent Res Sci Technol 3:67–70Google Scholar
  27. Cole JR, Chai B, Farris RJ, Wang Q (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucleic Acids Res 35(SI):D169–D172Google Scholar
  28. Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000a) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183(1):67–71PubMedGoogle Scholar
  29. Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto J, Ventosa A (2000b) The α-amylase gene amyH of the moderate halophile Halomonas meridiana : cloning and molecular characterization. Microbiology 146(4):861–868PubMedCrossRefGoogle Scholar
  30. CSSRI (Central Soil Salinity Research Institute) (2012) Computerized database on salt effected soils in India. Indian Council of Agricultural Research, Ministry of Agriculture, Government of India, New DelhiGoogle Scholar
  31. Cui HL, Yang X, Zhou YG, Liu HC, Zhou PJ, Dyall-Smith ML (2012) Halobellus limi sp. nov. and Halobellus salinus sp. nov., isolated from two marine solar salterns. Int J Syst Evol Microbiol 62(6):1307–1313PubMedCrossRefGoogle Scholar
  32. Daneshmand F, Mohammad JA, Khosrow MK (2009) Effect of acetylsalicylic acid (Aspirin) on salt and osmotic stress tolerance in Solanum bulbocastanum in vitro: enzymatic antioxidants. Am Eurasian J Agric Environ Sci 6:92–99Google Scholar
  33. Dardanelli MS, Fernández de Córdoba FJ, Rosario Espuny M, Rodríguez Carvajal MA, Soria Díaz ME, et al (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721Google Scholar
  34. Das S, De M, Ray R, Ganguly D, Jana TK, De TK (2011) Salt tolerant culturable microbes accessible in the soil of the Sundarbans mangrove forest, India. Open J Ecol 1:35–40CrossRefGoogle Scholar
  35. Davis PJ (2004) Nature, occurrence and functions. In: Davis PJ (ed) Plant hormones biosynthesis, signal transduction, action, vol 1. Kluwer, Dordrecht, pp 1–15Google Scholar
  36. de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009) Bergey’s manual of systematic bacteriology, vol 3: The Firmicutes, 2nd edn. XXVI, 1450 p. 393Google Scholar
  37. Del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55(2):71–81PubMedCrossRefGoogle Scholar
  38. Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005) Pseudomonas fluorescense mediated vigour in black pepper (Piper nigrum L.) under green house cultivation. Ann Microbiol 55(3):171–174Google Scholar
  39. Dodd IC (2009) Rhizosphere manipulations tomaximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60(9):2454–2459PubMedCrossRefGoogle Scholar
  40. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 8:1–14Google Scholar
  41. Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161(6):345–360PubMedCrossRefGoogle Scholar
  42. Echigo A, Minegishi H, Shimane Y, Kamekura M, Usami R (2012) Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 62(2):289–294PubMedCrossRefGoogle Scholar
  43. Echigo A, Minegishi H, Shimane Y, Kamekura M, Itoh T, Usami R (2013) Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 63(10):3556–3562PubMedCrossRefGoogle Scholar
  44. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  45. Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571CrossRefGoogle Scholar
  46. Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 291–303Google Scholar
  47. Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in szernozem soil, semi-arid region of Uzbekistan. Sci World J 5:501–509CrossRefGoogle Scholar
  48. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189CrossRefGoogle Scholar
  49. Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi -Zouaoui N (2012) Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Ann Microbiol 62:835–841Google Scholar
  50. Fang C, Radosevich M, Fuhrmann JJ (2001) Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol Biochem 33(4):679–682CrossRefGoogle Scholar
  51. Food and Agricultural Organization (2015) Land and plant nutrition management service. Available from: www.fao.org/ag/agl/agll/spush/.pdf
  52. Gales G, Chehider N, Joulian C, Battaglia-Brunet F, Cayol JL, Postec A, Borgomano J, Neria- Gonzalez I, Lomans B, Ollivier B (2011) Characterization of Halanaerocella petrolearia gen. nov., sp. nov., a new anaerobic moderately halophilic fermentative bacterium isolated from a deep subsurface hypersaline oil reservoir. Extremophiles 15(5):565–571Google Scholar
  53. Gao Z, Ruan L, Chen X, Zhang Y, Xu X (2010) A novel salt-tolerant endo-β-1, 4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87(4):1373–1382PubMedCrossRefGoogle Scholar
  54. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source-utilization. Appl Environ Microbiol 57:2351–2359PubMedPubMedCentralGoogle Scholar
  55. Giridhar PV, Chandra T (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45(10):1730–1737CrossRefGoogle Scholar
  56. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235Google Scholar
  57. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240CrossRefGoogle Scholar
  58. Hanelt I, Muller V (2013) Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillus halophilus to its environment. Life 3:234–243PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  60. Heidari M, Mosavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN J Agric Biol Sci 6:6–11Google Scholar
  61. Heritage J, Evans EGV, Killington RA (1996) Introductory microbiology. Cambridge University Press, England, 234 pCrossRefGoogle Scholar
  62. Huang X, Shao Z, Hong Y, Lin L, Li C, Huang F, Wang H, Liu Z (2010) Cel8H, a novel endoglucanase from the halophilic bacterium Halomonas sp. S66-4: molecular cloning, heterogonous expression, and biochemical characterization. J Microbiol 48(3):318–324PubMedCrossRefGoogle Scholar
  63. Hussain MI, Asghar HN, Arshad M, Shahbaz M (2013) Screening of multi-traits rhizobacteria to improve maize growth under axenic conditions. J Anim Plant Sci 23:514–520Google Scholar
  64. Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization pattern for analysis of microbial community structure under field and green house conditions. FEMS Microbiol Ecol 26:151–163CrossRefGoogle Scholar
  65. Ishikawa M, Yamasato K, Kodama K, Yasuda H, Matsuyama M, Okamoto-Kainuma A, Koizumi Y (2013) Alkalibacterium gilvum sp. nov., slightly halophilic and alkaliphilic lactic acid bacterium isolated from soft and semi-hard cheeses. Int J Syst Evol Microbiol 63(4):1471–1478PubMedCrossRefGoogle Scholar
  66. Jacques MA, Durand K, Orgeur G, Balidas S, Fricot C, Bonneau S, Quillévéré A, Audusseau C, Olivier V, Grimault V, Mathis R (2012) Phylogenetic analysis and polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that nonpathogenic strains are distinct from C. michiganensis subsp. michiganensis. Appl Environ Microbiol 78(23):8388–8402PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J Agric Res 73:213–219CrossRefGoogle Scholar
  68. Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277CrossRefGoogle Scholar
  69. Jha M, Chourasia S, Sinha S (2013) Microbial consortium for sustainable rice production. Agroecol Sustain Food Syst 37(3):340–362CrossRefGoogle Scholar
  70. Jiang F, Cao S-J, Li ZH, Fan H, Li HF, Liu WJ, Yuan HL (2011) Salisediminibacterium halotolerans gen. nov., sp. nov., a halophilic bacterium isolated from Xiarinaoer soda lake sediment in Inner Mongolia, China. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.034488-034480
  71. Joshi RH, Dodia MS, Singh SP (2008) Optimization of culture parameters for production of commercially valuable alkaline protease from a haloalkaliphilic bacterium isolated from sea water. Biotechnol Bioprocess Eng 13:552–559CrossRefGoogle Scholar
  72. Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley α-amylase- inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217PubMedCrossRefGoogle Scholar
  73. Kamekura M (1986) Production and function of enzymes of eubacterial halophiles. FEMS Microbiol Rev 2(1–2):145–150CrossRefGoogle Scholar
  74. Kanekar PP, Kanekar SP, Kelkar AS, Dhakephalkar PK (2012) Halophiles – taxonomy, diversity, physiology and applications. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, Dordrecht, pp 1–34CrossRefGoogle Scholar
  75. Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, Hong JK, Lee IJ (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281PubMedCrossRefGoogle Scholar
  76. Karan R, Singh S, Kapoor S, Khare S (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28:136–145CrossRefGoogle Scholar
  77. Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P (2008) A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. Enzym Microb Technol 42:404–413CrossRefGoogle Scholar
  78. Kim JM, Lee SH, Jung JY, Jeon CO (2010) Marinobacterium lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 60(8):1828–1831PubMedCrossRefGoogle Scholar
  79. Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp EJ01 in tomato and Arabidopsis is accompanied by Up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregates stabilization and promotion of biological properties in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304CrossRefGoogle Scholar
  81. Kohler J, Caravaca F, Alguacil MM, Roldan A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716CrossRefGoogle Scholar
  82. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in Soybean (Glycine max L. Merrill). J Plant Growth Regul 34(3):558–573CrossRefGoogle Scholar
  83. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Induced drought tolerance through wild and mutant bacterial strain Pseudomonas simiae in mung bean (Vigna radiata L.). World J Microbiol Biotechnol 32(1):1–10CrossRefGoogle Scholar
  84. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4(1):1CrossRefGoogle Scholar
  85. Kushner D (1993) Growth and nutrition of halophilic bacteria. In: Russell HV, Hechstein LI (eds) The biology of halophilic bacteria, vol 1. CRC Press, Boca Raton, pp 87–103Google Scholar
  86. Lamosa P, Turner DL, Ventura R, Maycock C, Santos H (2003) Protein stabilization by compatible solutes. Eur J Biochem 270(23):4606–4614PubMedCrossRefGoogle Scholar
  87. Larsen H (1986) FEMS Microbiol Rev 39:3–7CrossRefGoogle Scholar
  88. León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014) From metagenomics to pure culture: isolation and characterization of the moderately Halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 80(13):3850–3857PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li X, Yu HY, Lin YF (2012) Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY 5. Afr J Biotechnol 11:6327–6334Google Scholar
  90. Liu W, Yang SS (2014) Oceanobacillus aidingensis sp. nov., a moderately halophilic bacterium. Antonie Van Leeuwenhoek 105(5):801–808PubMedPubMedCentralCrossRefGoogle Scholar
  91. Logan NA, Berkeley RCW (1984) Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882PubMedGoogle Scholar
  92. Machius M, Wiegand G, Huber R (1995) Crystal structure of calcium-depleted Bacillus licheniformis α-amylase at 2.2 Å resolution. J Mol Biol 246:545–559PubMedCrossRefGoogle Scholar
  93. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2001) The RDP II (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174CrossRefGoogle Scholar
  94. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012) Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinibacter ruber. Int J Syst Evol Microbiol 62(7):1521–1527PubMedCrossRefGoogle Scholar
  95. Martín S, Márquez M, Sánchez-Porro C, Mellado E, Arahal D, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387PubMedCrossRefGoogle Scholar
  96. Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:33–439CrossRefGoogle Scholar
  97. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  98. Maziah M, Zuraida AR, Halimi M, Zulkifli S,, Sreeramanan S (2009) Responses of banana plant-lets to rhizobacteria inoculation under salt stress condition. Am-Euras J Sustain Agric 3:290–305Google Scholar
  99. Meintanis C, Chalkou KI, Kormas KA, Lymperopoulou DS, Katsifas EA, Hatzinikolaou DG, Karagouni AD (2006) Application of rpoB sequences similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 46:395–401CrossRefGoogle Scholar
  100. Meyer M, Stenzel U, Myles S, Prufer K, Hofreiter M (2007) Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res 35:97CrossRefGoogle Scholar
  101. Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake. Int J Syst Evol Microbiol 62(8):1970–1973PubMedCrossRefGoogle Scholar
  102. Miao C, Jia F, Wan Y, Zhang W, Lin M, Jin W (2014) Halomonas huangheensis sp. nov., a moder- ately halophilic bacterium isolated from a saline–alkali soil. Int J Syst Evol Microbiol 64(3):915–920PubMedCrossRefGoogle Scholar
  103. Miller G, Susuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467PubMedCrossRefGoogle Scholar
  104. Moller MF, Kjeldsen KU, Ingvorsen K (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Antonie Van Leeuwenhoek 98(4):553–565PubMedCrossRefGoogle Scholar
  105. Moreno ML, Perez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51CrossRefGoogle Scholar
  106. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681Google Scholar
  107. Nabti E, Sahnoune M, Ghoul M, Fischer D, Rothballer M, Schmid M, Hartmann A (2012) Enhancement and restoration of growth of durum wheat (Triticum durum, varwaha) on saline soil by using Azospirillum brasilense NH and marine alga Ulva lactuca. In: Krueger D, Meyer H (eds) Algae, ecology, economic uses and environmental impact marine biology. Nova Sciences, New York, pp 29–52Google Scholar
  108. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74(2):533–542CrossRefGoogle Scholar
  109. Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan, and their implication in providing salt tolerance to Glycine max (L.). Afr J Biotechnol 8:5762–5766CrossRefGoogle Scholar
  110. Neilands JB (1981) Iron adsorption and transport in microorganisms. Annu Rev Nutr 1:27–46PubMedCrossRefGoogle Scholar
  111. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  112. Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46(7):707–715CrossRefGoogle Scholar
  113. Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78(1):39–48PubMedCrossRefGoogle Scholar
  114. Omar MNA, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks Veg Sci 44:133–147CrossRefGoogle Scholar
  115. Oren M (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269PubMedCrossRefGoogle Scholar
  116. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  117. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3(1):825–834CrossRefGoogle Scholar
  118. Pandey S, Singh SP (2012) Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl Biochem Biotechnol 166:1747–1757PubMedCrossRefGoogle Scholar
  119. Pappa A, Sánchez-Porro C, Lazoura P, Kallimanis A, Perisynakis A, Ventosa A, Drainas C, Koukkou A (2010) Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 60(6):1432–1436PubMedCrossRefGoogle Scholar
  120. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  121. Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752CrossRefGoogle Scholar
  122. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48(5):378–384PubMedCrossRefGoogle Scholar
  123. Perez E, Miguel S, Marıa MB, Yarzabal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39(11):2905–2914CrossRefGoogle Scholar
  124. Pourbabaee AA, Bostani S, Amozzegar MA, Naddaf R (2011) Decolorization of cibacron black w-55 under Alkaline conditions by new strain of Halomonas sp. isolated from textile effl uent. Iran J Chem Chem Eng 30(4):63–70Google Scholar
  125. Pugin B, Blamey JM, Baxter BK, Wiegel J (2012) Amphibacillus cookii sp. nov., a facultatively aerobic, spore-forming, moderately halophilic, alkalithermotolerant bacterium. Int J Syst Evol Microbiol 62(9):2090–2096PubMedCrossRefGoogle Scholar
  126. Rajput L, Imran A, Mubeen F, Hafeez FY (2013) Salt-tolerant PGPR strain Planococcus rifi etoen- sis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962Google Scholar
  127. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:1–7CrossRefGoogle Scholar
  128. Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic Archaeon thermococcus kodakaraensis. J Bacteriol 186(13):4185–4191PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rodríguez-Díaz M, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, ChichesterGoogle Scholar
  130. Roessler M, Muller V (2001) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128PubMedCrossRefGoogle Scholar
  131. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272CrossRefGoogle Scholar
  132. Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by Arbuscular mycorrhizal symbiosis and by drought stress. J Exp Bot 52:2241–2242PubMedGoogle Scholar
  133. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B, Matsumoto TK et al (2001) AtHKT1 is a salt tolerance determinant that controls Na1 entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sadfi-Zouaoui N, Essghaier B, Hannachi I, Hajlaoui MR, Boudabous A (2007) First report on the use of moderately halophilic bacteria against stem canker of greenhouse tomatoes caused by Botrytis cinerea. Ann Microbiol 57(3):337–339Google Scholar
  135. Saghafi K, Ahmadi J, Asgharzadeh A, Bakhtiari S (2013) The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int J Adv Biol Biomed Res 4:421–431CrossRefGoogle Scholar
  136. Sandhya V, Ali SZ, Grover M, Kishore N, Venkateswarlu B (2009a) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601Google Scholar
  137. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009b) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26CrossRefGoogle Scholar
  138. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30CrossRefGoogle Scholar
  139. Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, Santos AL (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44:1299–1304PubMedCrossRefGoogle Scholar
  140. Sapsirisopa S, Chookietwattana K, Maneewan K, khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. Asian J Food Agro-Ind (Special Issue):S69–S74Google Scholar
  141. Saralov A, Kuznetsov B, Reutskikh E, Baslerov R, Panteleeva A, Suzina N (2012) Arhodomonas recens sp. nov., a halophilic alkane-utilizing hydrogen-oxidizing bacterium from the brines of flotation enrichment of potassium minerals. Microbiology 81(5):582–588CrossRefGoogle Scholar
  142. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–223CrossRefGoogle Scholar
  143. ShaoMin Y, Guang W (2013) Secretory pathway of cellulase: a mini-review. Biotechnol Biofuels. doi: 10.1186/1754-6834-6-177 Google Scholar
  144. Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant Bacilli from saline soils of eastern Indo-Gangetic Plains of India. Geomicrobiology 32:70–180Google Scholar
  145. Shen M, Kang YJ, Wang HL, Zhang XS, Zhao QX (2012) Effect of plant growth promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill) under simulated seawater irrigation. J Gen Appl Microbiol 58:253–262PubMedCrossRefGoogle Scholar
  146. Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflowers (Helianthus annuus L). Not Sci Biol 2:57–66Google Scholar
  147. Shivanand P, Mugeraya G, Kumar A (2013) Utilization of renewable agricultural residues for the production of extracellular halostable cellulase from newly isolated Halomonas sp. strain PS47. Ann Microbiol 63(4):1257–1263CrossRefGoogle Scholar
  148. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogeae (L.) by the interaction of halotolerant plant-growth promoting rhizobacteria. J Plant Growth Regul 31:195–206CrossRefGoogle Scholar
  149. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584PubMedCrossRefGoogle Scholar
  150. Singh SP, Raval VH, Purohit MK, Pandey S, Thumar JT, Gohel SD, Akbari VG, Rawal CM (2012) Haloalkaliphilc bacteria and actinobacteria from the saline habitats: new opportunities for bio-catalysis and bioremediation. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management: microbes and environment. Springer, New York/Dordrecht (Library of Congress Control Number: 2011944027), pp 415–429Google Scholar
  151. Sivaprakasam S, Mahadevan S, Sekar S, Rajakumar S (2008) Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb Cell Fact 7:15PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71CrossRefGoogle Scholar
  153. Sorokin D, Kolganova T (2013) Bacterial chitin utilization at halophilic conditions. Extremophiles 18:243–248PubMedCrossRefGoogle Scholar
  154. Souza PM (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 41:850–861PubMedPubMedCentralGoogle Scholar
  155. Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56(4):453–457PubMedCrossRefGoogle Scholar
  156. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  157. Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103(38):13997–14002PubMedPubMedCentralCrossRefGoogle Scholar
  158. Suzuki K, Goodfellow M, O’Donnell AG (1993) Cell envelopes and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 195–250Google Scholar
  159. Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing Rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67(8):3655–3664PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58CrossRefGoogle Scholar
  161. Upadhyay SK, Singh JS, Singh DP (2011) Exo-polysaccharide-producing plant growth-promoting rhizobacteria salinity condition. Pedosphere 21:214–222CrossRefGoogle Scholar
  162. Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Effect of nitric oxide signaling in bacterial treated soybean plant under salt stress. Arch Microbiol 195:171–177CrossRefGoogle Scholar
  163. Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile‐mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119(2):539–551PubMedCrossRefGoogle Scholar
  164. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1–15CrossRefGoogle Scholar
  165. Van Qua D, Simidu U, Taga N (1981) Purifi cation and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can J Microbiol 27:505–510CrossRefGoogle Scholar
  166. Vidyasagar M, Prakash S, Jayalakshmi S, Sreeramulu K (2007) Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World J Microbiol Biotechnol 23:655–662CrossRefGoogle Scholar
  167. Vijayaraghavan P, Jebamalar TRJ, Vincent SGP (2012) Biosynthesis optimization and purification of a solvent stable alkaline serine protease from Halobacterium sp. Ann Microbiol 62:403–410CrossRefGoogle Scholar
  168. Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907PubMedCrossRefGoogle Scholar
  169. Wang YX, Liu JH, Xiao W, Zhang XX, Li YQ, Lai YH, Ji KY, Wen ML, Cui XL (2012) Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. Int J Syst Evol Microbiol 62(2):390–396PubMedCrossRefGoogle Scholar
  170. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390PubMedPubMedCentralCrossRefGoogle Scholar
  171. Wang S, Sun L, Wei D, Zhou B, Zhang J, Gu X, Zhang L, Liu Y, Li Y, Guo W (2014) Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated from saline-sodic soil in Daqing, China. J Microbiol 52(7):548–553PubMedCrossRefGoogle Scholar
  172. Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7(5):423–431PubMedCrossRefGoogle Scholar
  173. Whittaker P, Mossoba MM, Al-Khaldi S, Fry FS, Dunkel VC, Tall BD, Yurawecz MP (2003) Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters. J Microbiol Methods 55(3):709–716PubMedCrossRefGoogle Scholar
  174. Woese C (1993) The Archaea: their history and significance. In Kates M, Kushner D, Matheson A (eds) The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam, pp vii–xxixGoogle Scholar
  175. Yoon JH, Kang SJ, Jung YT, Lee KC, Oh HW, Oh TK (2010) Virgibacillus byunsanensis sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 60(2):291–295PubMedCrossRefGoogle Scholar
  176. Zeikus JG, Hegge PW, Thompson TE, Phelps TJ, Langworthy TA (1983) Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov. J Biotechnol 152:114–124Google Scholar
  177. Zhang G, Li S, Xue Y, Mao L, Ma Y (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16:35–43PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Anjney Sharma
    • 1
  • Anukool Vaishnav
    • 2
  • Hena Jamali
    • 1
  • Anchal Kumar Srivastava
    • 1
  • Anil Kumar Saxena
    • 1
  • Alok Kumar Srivastava
    • 1
    Email author
  1. 1.National Bureau of Agriculturally Important MicroorganismsMau Nath BhanjanIndia
  2. 2.Amity Institute of Microbial Technology (AIMT)NoidaIndia

Personalised recommendations