PGPR-Mediated Amelioration of Crops Under Salt Stress

  • Anukool Vaishnav
  • Ajit Varma
  • Narendra Tuteja
  • Devendra Kumar ChoudharyEmail author


Soil salinity is a major abiotic factor which adversely affects the crop growth and productivity worldwide. Higher salt concentration caused ion imbalance and hyperosmotic stress which often lead to oxidative stress in plants. Soil salinization is mainly due to the poor irrigation management practices and natural causes. A total 20 % of the world’s cultivated lands and almost half of all irrigated lands are affected by high salinity. This chapter begins by stressing the importance of research into plant salt tolerance. After a brief outline of salinity-induced damage to both agricultural yield and growth of plants, strategies which plants adopt to deal with salinity are discussed, and current biotechnological efforts towards producing salt-tolerant crops are summarized. Particular attention is paid towards the application of plant growth-promoting bacteria in agriculture system for producing salt stress-tolerant crops and a fundamental understanding towards the mechanisms of beneficial plant–microbe interaction in the presence of salt.


Salt stress Induced systemic tolerance Plant growth-promoting rhizobacteria Osmotolerance Nutrient mobilization 



The financial support for some of the research in this review has partially been supported by DBT and SERB grant no. BT/PR1231/AGR/021/340/2011 and SR/FT/LS-129/2012, respectively, to DKC.


  1. Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MK, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60Google Scholar
  2. Agarwal DK, Billore SD, Sharma AN, Dupare BU, Srivastava SK (2013) Soybean: introduction, improvement, and utilization in India: problems and prospects. Agric Res 2(4):293–300CrossRefGoogle Scholar
  3. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589CrossRefPubMedGoogle Scholar
  4. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176CrossRefPubMedGoogle Scholar
  5. Ahmed HMI, Farag MMA (2011) Alleviation of salinity stress in lettuce during germination by seed priming. J Plant Production Mansoura Univ 2(5):725–737Google Scholar
  6. Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59(15):4119–4131CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292(1-2):305–315CrossRefGoogle Scholar
  8. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 6:744–752CrossRefGoogle Scholar
  9. Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharides-producing bacteria restrict sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  10. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  11. Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  12. Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 331–345Google Scholar
  13. Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91CrossRefPubMedGoogle Scholar
  14. Ben Rejeb I, Atauri Miranda L, Cordier M, Mauch-Mani B (2013) Induced tolerance and priming for abiotic stress in plants. In: Gaur RK, Sharma P (eds) Molecular approaches in plant abiotic stress. CRC Press, Boca RatonGoogle Scholar
  15. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350CrossRefPubMedGoogle Scholar
  16. Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol. doi: 10.5402/2012/927436 PubMedPubMedCentralGoogle Scholar
  17. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702CrossRefPubMedGoogle Scholar
  18. Budzikiewicz H (2010) Microbial siderophores. Springer, ViennaCrossRefGoogle Scholar
  19. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45(1):28–35CrossRefGoogle Scholar
  20. Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459CrossRefGoogle Scholar
  21. Cho SM, Kang BR, Kim JJ, Kim YC (2012) Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol J 28(2):202–206CrossRefGoogle Scholar
  22. Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96(5):1137–1155CrossRefPubMedGoogle Scholar
  23. Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2015) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35:276–300Google Scholar
  24. Compant S, Duffy B, Jerzy N, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  26. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res 156:161–171CrossRefGoogle Scholar
  27. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water limited environments? In: 4th International Crop Science CongressGoogle Scholar
  28. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428CrossRefPubMedGoogle Scholar
  29. Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379CrossRefGoogle Scholar
  30. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159CrossRefPubMedGoogle Scholar
  31. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96(4):1480–1485CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59(11):3039–3050CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gharmakher HN, Machet JM, Beaudoin N, Recous S (2009) Estimation of sulfur mineralization and relationships with nitrogen and carbon in soils. Bio Fertil Soils 45(3):297–304CrossRefGoogle Scholar
  34. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930CrossRefPubMedGoogle Scholar
  35. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312CrossRefPubMedGoogle Scholar
  36. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39CrossRefPubMedGoogle Scholar
  37. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68CrossRefPubMedGoogle Scholar
  38. Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22(9):983–990CrossRefGoogle Scholar
  39. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987CrossRefPubMedGoogle Scholar
  40. Iqbal N, Umar S, Nazar R (2014) Manipulating osmolytes for breeding salinity-tolerant plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance a sustainable approach. ISBN: 978-0-12-800875-1, Elsevier Inc., UKGoogle Scholar
  41. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  42. Kang S-M, Khan AL, Hamayun M, Hussain J, Joo G-J, You Y-H, Kim J-G, Lee I-J (2012) Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J Microbiol 50:902–909CrossRefPubMedGoogle Scholar
  43. Kang S-M, Radhakrishnan R, Khan AL, Kim M-J, Park J-M, Kim B-R, Shin D-H, Lee I-J (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124CrossRefPubMedGoogle Scholar
  44. Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. doi: 10.1007/978-3-642-37241-4_10 Google Scholar
  45. Khodair TA, Galal GF, El-Tayeb TS (2008) Effect of inoculating wheat seedlings with exopolysaccharide-producing bacteria in saline soil. J Appl Sci Res 4:2065–2070Google Scholar
  46. Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cell 24:45–59Google Scholar
  47. Kisiala A, Laffont C, Emery RN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe In 26(10):1225–1231CrossRefGoogle Scholar
  48. Kohler J, Hernández JA, Caravacaa F, Roldána A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  49. Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64(9):2541–2555CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kumar A, Sharma S, Mishra S (2010) Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J Plant Growth Regul 29:297–306CrossRefGoogle Scholar
  51. Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34:558–573Google Scholar
  52. Liu X-M, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774PubMedPubMedCentralGoogle Scholar
  53. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258CrossRefPubMedGoogle Scholar
  54. Maiti B, Shekar M, Khusiramani R, Karunasagar I, Karunasagar I (2009) Evaluation of RAPD-PCR and protein profile analysis to differentiate Vibrio harveyi strains prevalent along the southwest coast of India. J Genet 88(3):273–279CrossRefPubMedGoogle Scholar
  55. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17(1):25–32CrossRefPubMedPubMedCentralGoogle Scholar
  56. Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552CrossRefPubMedGoogle Scholar
  57. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefPubMedGoogle Scholar
  58. Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5):337–347CrossRefPubMedGoogle Scholar
  59. Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42(9):717–722CrossRefPubMedGoogle Scholar
  60. Mia MAB, Hossain MM, Zhamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen nutrition in crops, with special reference to rice and banana. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. doi: 10.1007/978-3-642-37241-4_10 Google Scholar
  61. Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76(2):342–351CrossRefPubMedGoogle Scholar
  62. Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47(1):35–43CrossRefGoogle Scholar
  63. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol Plant Mol Biol 59:651–681CrossRefGoogle Scholar
  64. Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8(1):230CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9CrossRefPubMedGoogle Scholar
  66. Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pandey P, Kang SC, Gupta CP, Maheshwari DK (2005) Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr Microbiol 51(5):303–309CrossRefPubMedGoogle Scholar
  68. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56CrossRefGoogle Scholar
  69. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384CrossRefPubMedGoogle Scholar
  70. Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Bacteria in agrobiology: crop ecosystems, Springer, Berlin/Heidelberg, pp 295–343Google Scholar
  71. Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefPubMedGoogle Scholar
  72. Rajwar A, Sahgal M, Johri BN (2013) Legume–rhizobia symbiosis and interactions in agroecosystems. In: Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 233–265Google Scholar
  73. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2(6):1–7. Google Scholar
  74. Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88CrossRefPubMedGoogle Scholar
  75. Roopa B, Maya C, Makari HK (2012) Effect of different PGPR strain along with rhizobium on nodulation and chick pea productivity. Asian J Exp Biol Sci 3:424–426Google Scholar
  76. Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth-promoting bacteria. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. doi: 10.1007/978-3-642-37241-4_11 Google Scholar
  77. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159CrossRefPubMedGoogle Scholar
  78. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249CrossRefGoogle Scholar
  79. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS 9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248CrossRefPubMedGoogle Scholar
  80. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot.
  81. Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14(3):575–588CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005CrossRefPubMedGoogle Scholar
  83. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131CrossRefPubMedGoogle Scholar
  84. Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant growth promoting rhizobacteria. J Plant Growth Regul 31:195–206CrossRefGoogle Scholar
  85. Siddikee MA, Glick BR, Chauhan PS, Yim W, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434CrossRefPubMedGoogle Scholar
  86. Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS et al (eds) Microbes for legume improvement. doi: 10.1007/978-3-211-99753-6_9 Google Scholar
  87. Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33(8):1236–1251CrossRefGoogle Scholar
  88. Spaepen S, Vanderleyden J, Remans R (2007) Indole‐3‐acetic acid in microbial and microorganism‐plant signaling. FEMS Microbiol Rev 31(4):425–448CrossRefPubMedGoogle Scholar
  89. Sun L, Qiu FB, Zhang XX, Dai X, Dong XZ, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424CrossRefPubMedGoogle Scholar
  90. Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39(1):245Google Scholar
  91. Thomine S, Lanquar V (2011) Iron transport and signaling in plants. In: Transporters and pumps in plant signaling, Springer, Berlin/Heidelberg, pp 99–131Google Scholar
  92. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222CrossRefGoogle Scholar
  93. Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile‐mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551CrossRefPubMedGoogle Scholar
  94. Vardharajula S, Ali SKZ, Grover M, Reddy G, Bandi V (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  95. Vardharajula S, Ali SA, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14CrossRefGoogle Scholar
  96. Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28(6):2383–2393CrossRefPubMedGoogle Scholar
  97. Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54CrossRefGoogle Scholar
  98. Yoon GM, Kieber JJ (2013) 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants. AoB Plants 5:plt017CrossRefPubMedCentralGoogle Scholar
  99. Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86Google Scholar
  100. Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo SI, Paré PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851CrossRefPubMedGoogle Scholar
  101. Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Anukool Vaishnav
    • 1
  • Ajit Varma
    • 1
  • Narendra Tuteja
    • 1
  • Devendra Kumar Choudhary
    • 1
    Email author
  1. 1.Amity Institute of Microbial Technology (AIMT)NoidaIndia

Personalised recommendations