Skip to main content

Rhizosphere Interactions: Life Below Ground

  • Chapter
  • First Online:
Plant-Microbe Interaction: An Approach to Sustainable Agriculture

Abstract

The interface between roots and soil is a region with high interaction among a myriad of organisms that affect biogeochemical cycles, plant growth, and stress tolerance. Similarly chemical compounds secreted within the rhizosphere act as attractants to microorganisms. Due to its dynamic nature and complexity, understanding rhizospheric biology and activity is essential in ensuring improved plant function and productivity within an ecosystem. Sustainable agricultural practices are dependent on studies conducted with regards to plant–microbe interactions in the rhizosphere. This chapter is an exposition of rhizospheric interactions spanning the chemistry of exudates and signals that contribute towards the complexity of the rhizosphere. The information derived from recent studies and the utilization of current technological platforms will enable us to explore and gather more information at the plant and microbiome level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827. doi:10.1038/nature03608, PMID: 15944706

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105. doi:10.1007/s00344-007-0013-5

    Article  CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18(5):611–620. doi:10.1016/S1002-0160(08)60055-7

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681. doi:10.1111/j.1365-3040.2009.01926.x, PMID: 19143988

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146(2):762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG et al (2009a) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017. doi:10.1104/pp.109.147462, PMID: 19854857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D et al (2009b) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650. doi:10.1016/j.copbio.2009.09.014, PMID: 19875278

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R et al (2013a) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288(7):4502–4512. doi:10.1074/jbc.M112.433300, PMID: 23293028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Zolla G, Bakker MG et al (2013b) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273. doi:10.1111/nph.12124, PMID: 23347044

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Walker TS, Schweizer HP et al (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of sweet basil (Ocimum basilicum L.). Plant Physiol Biochem 40:983–995

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266. doi:10.1146/annurev.arplant.57.032905.105159, PMID: 16669762

    Article  CAS  PubMed  Google Scholar 

  • Bakker M, Manter D, Sheflin A et al (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1–2):1–13. doi:10.1007/s11104-012-1361-x

    Article  CAS  Google Scholar 

  • Bakker PAHM, Berendsen RL, Doornbos RF et al (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4(165). doi:10.3389/fpls.2013.00165

  • Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–308

    Article  CAS  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324:746–748. doi:10.1126/science.1171661

    Article  CAS  PubMed  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577. doi:10.1126/science.1222289, PMID: 22723421

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. doi:10.1016/j.tplants.2012.04.001, PMID: 22564542

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22. doi:10.1016/j.fgb.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  • Buttner M (2007) The monosaccharide transporter (−like) gene family in Arabidopsis. FEBS Letters 581:2318–2324

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Cai W, Zhang J et al (2009) Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol Microbiol 73(3):507–517. doi:10.1111/j.1365-2958.2009.06790.x, PMID: 19602148

    Article  CAS  PubMed  Google Scholar 

  • Cannesan MA, Durand C, Burel C et al (2012) Effect of Arabinogalactan Proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol 159(4):1658–1670. doi:10.1104/pp.112.198507, PMID: 22645070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG et al (2013a) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PloS ONE 8(2):e55731. doi:10.1371/journal.pone.0055731, PMID: 23383346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2013b) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803. doi:10.1038/ismej.2013.196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charmont S, Jamet E, Pont-Lezica R et al (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66(4):453–461. doi:10.1016/j.phytochem.2004.12.013, PMID: 15694452

    Article  CAS  PubMed  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E et al (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464. doi:10.1073/pnas.0600313103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi O, Kim JG, Joeng Y et al (2008) Pyrroloquinoline quinine is a plant growth promotion factor by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Coronado C, Zuanazzi J, Sallaud C et al (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108(2):533–542. doi:10.1104/pp.108.2.533, PMID: 12228491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA et al (2003) Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int J Plant Sci 164:861–866

    Article  Google Scholar 

  • Daniels R, De Vos DE, Desair J et al (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277(1):462–468. doi:10.1074/jbc.M106655200

    Article  CAS  PubMed  Google Scholar 

  • De Hoff P, Brill L, Hirsch A (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282(1):1–15. doi:10.1007/s00438-009-0460-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe In 15(11):1173–1180. doi:10.1094/MPMI.2002.15.11.1173, PMID: 12423023

    Article  Google Scholar 

  • De-la-Peña C, Lei Z, Watson BS et al (2008) Root – microbe communication through protein secretion. J Biol Chem 283(37):25247–25255. doi:10.1074/jbc.M801967200, PMID: 18635546

    Article  PubMed  CAS  Google Scholar 

  • De-la-Peña C, Badri DV, Lei Z et al (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285(40):30654–30665. doi:10.1074/jbc.M110.119040, PMID: 20682788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in determining the structure of rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Barak R, Chet I et al (2008) Ultra structural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. J Phytopathol 107:168–175. doi:10.1111/j.1439-0434.1983.tb00064.x

    Article  Google Scholar 

  • Fan TWM, Lane AN, Shenkar M et al (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochem 57:209–221

    Article  CAS  Google Scholar 

  • Fang W, St. Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154(3):1549–1557. doi:10.1104/pp.110.163014, PMID: 20837701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y et al (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 109(7):2666–2671. doi:10.1073/pnas.1118650109, PMID: 22308426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field B, Jordan F, Osbourn A (2006) First encounters – deployment of defence-related natural products by plants. New Phytol 172:193–207

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48(8):1081–1091. doi:10.1093/pcp/pcm091, PMID: 17634181

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M, Robinson JB et al (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe In 16(9):827–834. doi:10.1094/MPMI.2003.16.9.827

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7. doi:10.1016/j.femsle.2005.07.030, PMID: 16099604

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2004) The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    Article  CAS  PubMed  Google Scholar 

  • Guiñazú L, Andrés J, Del Papa M et al (2010) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46(2):85–190. doi:10.1007/s00374-009-0408-5

    Article  Google Scholar 

  • Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol and Biochem 37:445. doi:10.1016/j.soilbio.2004.07.037

    Article  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312(1–2):7–14. doi:10.1007/s11104-007-9514-z

    Article  CAS  Google Scholar 

  • Haudecoeur E, Planamente S, Cirou A et al (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 106:14587–14592. doi:10.1073/pnas.0808005106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirner A, Ladwig F, Stransky H et al (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. The Plant Cell 18:1931–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416. doi:10.1128/EC.5.4.613-619.2006

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5(4):613–619. doi:10.1128/EC.5.4.613-619.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi J-I, Prithiviraj B, Bais H et al (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222(5):848–857. doi:10.1007/s00425-005-0025-y, PMID: 16025342

    Article  CAS  PubMed  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF et al (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275. http://dx.doi.org/10.1139/cjb-2013-0225

    Article  Google Scholar 

  • Ishimaru Y, Kakei Y, Shimo H et al (2011) A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286(28):24649–24655. doi:10.1074/jbc.M111.221168, PMID:21602276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson JK, Neufeld JD, Moran MA et al (2011) Omics for understanding microbial functional dynamics. Environ Microbiol 14(1):1–3. doi:10.1111/j.1462-2920.2011.02518.x

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Sharopova N, Lohar DP et al (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105(2):704–709. doi:10.1073/pnas.0709338105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juan Z, Subramanian S, Zhang Y et al (2007) Flavone Synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751

    Article  CAS  Google Scholar 

  • Kardol P, Cornips NJ, van Kempen MML et al (2007) Microbe-mediated plant–soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr 77:147–162

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882. doi:10.1126/science.1208473, PMID: 21836016

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Letters 581(12):2273–2280. doi:10.1016/j.febslet.2007.04.043

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Park BK, Kim SU et al (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc Natl Acad Sci USA 103(23):8846–8851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klepek YS, Geiger D, Stadler R et al (2005) Arabidopsis polyol transporters, a new member of the monosaccharide transporter-like superfamily, mediates H + −symport of numerous substrates including myo-inositol, glycerol and ribose. The Plant Cell 17:204–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H et al (2006) Loss ofAtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K et al (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sc 165(4):382–396

    Article  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande BA et al (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Foster J, Chen J et al (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. The Plant Journal 50:305–319

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15(4):259–267. doi:10.1007/bf00337210

    Article  CAS  Google Scholar 

  • Ling N, Zhang W, Wang D et al (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PloS ONE 8(5):e63383. doi:10.1371/journal.pone.0063383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J et al (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57(3):389–399. doi:10.1111/j.1365-313X.2008.03696.x, PMID:1882642

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161. doi:10.1038/ng2074, PMID: 17721535

    Article  CAS  PubMed  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40(4):923–940. doi:10.2135/cropsci2000.404923x

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mathesius U, Watt M (2010) Rhizosphere signals for plant-microbe interactions: implications for field-grown plants. In: Lüttge UE, Beyschlag W (eds) Progress in botany, vol 72. Springer, Berlin, pp 125–161. doi:10.1007/978-3-642-13145-5_5

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572. doi:10.1016/j.plaphy.2004.05.009, PMID: 15246071

    Article  CAS  PubMed  Google Scholar 

  • Meier IC, Avis PG, Phillips RP (2013) Fungal communities influence root exudation rates in pine seedlings. FEMS Microbiol Ecol 83(3):585–595. doi:10.1111/1574-6941.12016, PMID: 23013386

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332(6033):1097–1100. doi:10.1126/science.1203980, PMID: 21551032

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Bakker P (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek 92(4):367–389. doi:10.1007/s10482-007-9167-1

    Article  PubMed  Google Scholar 

  • Morandi D, Bailey J, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24(3):357–364. doi:10.1016/0048-4059(84)90009-2

    Article  CAS  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizospere, vol 7. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Murray JD, Karas BJ, Sato S et al (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah K (2016) Induced systemic resistance in rice. In: Choudhary KD, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 103–124. doi:10.1007/978-981-10-0388-2_7

    Chapter  Google Scholar 

  • Naher UA, Othman R, Mohd Saud H et al (2008) Effect of inoculation on root exudates carbon sugar and amino acids production of different rice varieties. Res J Microbiol 3(9):580–587

    Article  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB et al (2003) Enhancement of Plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132(1):146–153. doi:10.1104/pp.102.016295, PMID: 12746520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R et al (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PloS ONE 7(4):e35498. doi:10.1371/journal.pone.0035498, PMID: 22545111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC, Fitt BDL, Atkins SD et al (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18(8):365–373. doi:10.1016/j.tim.2010.06.002, PMID: 20598545

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A et al (2013) Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci 18(8):440–449. doi:10.1016/j.tplants.2013.03.006, PMID: 23623239

    Article  CAS  PubMed  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomoie 23:375–396

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M et al (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc 15:327–337

    Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM et al (2011) Evidence for leaf endophyte regulation of root symbionts: effect of Neotyphodium endophytes on the pre-infective state of mycorrhizal fungi. Symbiosis 55(1):19–28. doi:10.1007/s13199-011-0140-4

    Article  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T et al (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286(7):5446–5454. doi:10.1074/jbc.M110.180026

    Article  CAS  PubMed  Google Scholar 

  • Oba H, Tawaraya K, Wagatsuma T (2002) Inhibition of pre-symbiotic hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita by root exudates of Lupinus spp. Soil Sci Plant Nutr 48(1):117–120. doi:10.1080/00380768.2002.10409180

    Article  CAS  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L et al (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar N (1995) Interactions of rhizosphere bacteria with Cicer-Rhizobium symbiosis. CCS Haryana Agricultural University, Hisar

    Google Scholar 

  • Parmar N, Dadarwal KR (1997) Rhizobacteria from rhizosphere and rhizoplane of chick pea (Cicer arietinum L.). Indian J Microbiol 37:205–210

    Google Scholar 

  • Paterson E, Sim A, Standing D et al (2006) Root exudation from Hordeum vulgare in response to localized nitrate supply. J Exp Bot 57:2413–2420

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD et al (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136(1):2887–2894. http://dx.doi.org/10.1104/pp.104.044222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineros MA, Magalhaes JV, Alves VMC et al (2002) The physiology and biophysics of an aluminum tolerance regulation and function of root exudates mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poysti NJ, Loewen ED, Wang Z et al (2007) Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiol 153(3):727–736. doi:10.1099/mic.0.29148-0

    Article  CAS  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361. doi:10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, Nybroe O et al (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062. doi:10.1111/j.1574-6976.2010.00221.x

    Article  CAS  PubMed  Google Scholar 

  • Ramos-González MI, Campos MJ, Ramos JL (2005) Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol 187(12):4033–4041. doi:10.1128/JB.187.12.4033-4041.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C et al (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F et al (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation of chickpea (Cicer arietinum L) under field conditions. JAES 3(2):253–257

    Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T et al (2011) Identification of aluminium-resistance genes in plants provides an opportunity for enhancing the acid-soil tolerance of crop species. J Exp Bot 62:9–20

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134:1–10

    Article  CAS  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res LSMR-21:1–30

    Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao M et al (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B 362(1483):1149–1163. doi:10.1098/rstb.2007.2041

    Article  CAS  Google Scholar 

  • Sanders D, Bethke P (2000) Membrane transport. In: Buchanan BB, Gruisham W, Jones RL (eds) Biochemistry and molecular biology of plants. ASPP, Rockville, pp 110–158

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Annals of Botany 111:743–767. doi:10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzer SA, Klironomos JN, HilleRisLambers J et al (2011) Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92(2):296–303

    Article  PubMed  Google Scholar 

  • Sidler M, Hassa P, Hasan S et al (1998) Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10:1623–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegrid S, Lendzemo V, Langer I et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecule 12:1290–1306

    Article  Google Scholar 

  • Simons M, Permentier HP, de Weger LA et al (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interac 10(1):102–106. doi: http://dx.doi.org/10.1094/MPMI.1997.10.1.102

    Article  CAS  Google Scholar 

  • Snyder BA, Leite B, Hipskind J et al (1991) Accumulation of sorghum phytoalexins induced by Colletotrichum graminicola at the infection site. Physiol Mol Plant P 39:463–470

    Article  CAS  Google Scholar 

  • Stearns JC, Woody OZ, McConkey BJ et al (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression. Mol Plant Microbe Interac 25(5):668–676. doi:10.1094/MPMI-08-11-0213, PMID: 22352713

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen fixing bacterium closely associated with grasses. FEMS Microbiol Lett 24:506

    Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant Cell 18:731–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C et al (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei P, Tugnoli V, Bottura G et al (2002) Vibrational, 1H-NMR spectroscopic, and thermal characterization of gladiolus root exudates in relation to Fusarium oxysporum f. sp. gladioli resistance. Biopolymers 67(6):428–439. doi:10.1002/bip.10170

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13(6):637–648. doi: http://dx.doi.org/10.1094/MPMI.2000.13.6.637

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Chen H, Rajamani S et al (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134(1):137–146. doi:10.1104/pp.103.029918, PMID: 14671013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH et al (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  CAS  PubMed  Google Scholar 

  • Uren NC (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, Inc., New York, pp 19–40

    Google Scholar 

  • Urich T, Lanzén A, Qi J et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PloS One 3(6):e2527. doi: http://dx.doi.org/10.1371/journal.pone.0002527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicré M, Santaella C, Blanchet S et al (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138(2):998–1008. doi:10.1104/pp.104.051813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E et al (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51. doi: http://dx.doi.org/10.1104/pp.102.019661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir TL, Park S-W, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7(4):472–479. doi:10.1016/j.pbi.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454. doi:10.1093/jxb/ers054, PMID: 22378954

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X-G, Duan H-M, Tian T et al (2010) Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. FEMS Microbiol Lett 309(1):16–24. doi:10.1111/j.1574-6968.2010.02009.x

    CAS  PubMed  Google Scholar 

  • Xie F, Williams A, Edwards A et al (2012) A plant arabinogalactan like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol Plant–Microbe Interact 25(2):250–258. doi:10.1094/MPMI-08-11-0211, PMID: 21995765

    Article  CAS  PubMed  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G et al (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H et al (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179(2):484–494. doi:10.1111/j.1469-8137.2008.02462.x

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989, PMID: 10585971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Subramanian S, Stacey G et al (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57(1):171–183. doi:10.1111/j.1365-313X.2008.03676.x

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Gao J, Ma A et al (2013) Bioactive molecules in soil ecosystems: masters of the underground. Int J Mol Sci 14(5):8841–8868. doi:10.3390/ijms14058841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani K. Nadarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nadarajah, K.K. (2016). Rhizosphere Interactions: Life Below Ground. In: Choudhary, D., Varma, A., Tuteja, N. (eds) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2854-0_1

Download citation

Publish with us

Policies and ethics