Skip to main content

Spatial Distribution of Molecules Desorbing with Surface Reaction

  • Chapter
  • First Online:
Book cover Dynamic Chemical Processes on Solid Surfaces
  • 578 Accesses

Abstract

When temperature of Pd(110) is raised in a flow of NO + H2, N2, N2O and NO are simultaneously desorbed at ca. 490–495 K and the catalytic reaction of NO + H2 → 1/2 N2 + H2O is followed at about 500 K. If 14NO is adsorbed on a 15N/Pd(110) surface, 14N15N and 15NO are simultaneously desorbed at 490–495 K. Interestingly, the N2 desorbed at ca. 490 K takes on a very sharp off-normal spatial distribution expressed by cos46(θ + 38°) towards to the 〈001〉 axis. The result strongly suggests that the N2 is formed by a surface reaction with anisotropic collision of moved N(a) with adsorbed NO(a). In contrast, the N2 formed by the catalytic reaction of NO + H2 → 1/2 N2 + H2O takes on a cos θ distribution, indicating thermal equilibrium is attained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Takehiro, F. Besenbacher, F. Laegsgaard, K-I. Tanaka, and I Stensgaard, Surf. Sci. 397 (1998) 145.

    Google Scholar 

  2. M. Ikai, Hong He, C. E. Borroni-Bird, H. Hirano, K-I. Tanaka, Surf. Sci. 315 (1994) L973.

    Google Scholar 

  3. M. Ikai and K-I. Tanaka, Surf. Sci. 357/358 (1996) 781.

    Google Scholar 

  4. D.R. Horton and R.I. Masel, Surf. Sci., 125 (1983) 699.

    Google Scholar 

  5. J.N. Russell,Jr., I. Chorkendorff, A.-M. Lanzillotto, M.D. Alvey, and J.T. Yates, Jr., J. Chem. Phys., 85 (1986) 6186.

    Google Scholar 

  6. H.J. Robota, W. Vielhaber, M.C. Lin, J. Segner, and G. Ertl, Surf. Sci.,155 (1985) 101.

    Google Scholar 

  7. K.-H. Allers, H. Pfnür, P. Feulner, and D. Menzel, Surf. Sci., 286 (1993) 297.

    Google Scholar 

  8. K.D. Rendulic and A. Winkler, Surf. Sci., 299/300 (1994) 261.

    Google Scholar 

  9. R.C. Cosser, S.R. Bare, S. M. Francis, and D.A. King, Vacuum, 31 (1981) 503.

    Google Scholar 

  10. H. Dietrich, K. Jacobi, and G. Ertl, J. Chem. Phys., 105 (1996) 8944.

    Google Scholar 

  11. T.E. Madey and J.T. Yates,Jr., Surf. Sci., 63 (1977) 203.

    Google Scholar 

  12. R.D. Ramsier and J.T. Yates,Jr., Surf. Sci. Rept. 12 (1991) 243.

    Google Scholar 

  13. E.B.D. Bourdon, C.-C. Cho, P. Das, J.C. Polanyi, C.D. Stanners and G.-Q. Xu, J. Chem. Phys., 95 (1991) 1361.

    Google Scholar 

  14. F.M. Zimmermann and W. Ho, Surf. Sci. Rept., 22 (1995) 127.

    Google Scholar 

  15. E. Hasselbrink, S. Jakubith, S. Nettesheim, M. Wolf, A. Cassuto and G. Ertl, J. Chem. Phys., 92 (1990) 3154.

    Google Scholar 

  16. X-L. Zhou, X-Y. Zhu, and J.M. White, Surf. Sci. Rept. 13 (1991) 73.

    Google Scholar 

  17. L.J. Richter and R.R. Cavanagh, Prog. Surf. Sci., 39 (1992) 155.

    Google Scholar 

  18. T. Matsushima, J. Chem. Phys. 91 (1989) 5722.

    Google Scholar 

  19. T. Matsushima, J. Chem. Phys. 93 (1990) 1464.

    Google Scholar 

  20. M. Ikai and K-I. Tanaka, J. Phys. Chem., B, 103 (1999) 8277.

    Google Scholar 

  21. M. Ikai and K-I. Tanaka, J. Chem. Phys., 110 (1999) 7031.

    Google Scholar 

  22. R. Raval,M.A. Harrison, S.Haq, and D.A. King, Surf. Sci. 294 (1993) 10.

    Google Scholar 

  23. J. Shingh, W.K. Walter, A. Atrei, and D.A. King, hem. Phys. Lett.185 (1991) 426.

    Google Scholar 

  24. R.G. Sharpe, and M. Bowker, Surf. Sci.,360 (1996) 21.

    Google Scholar 

  25. K. Moriwaki, T. Matsumoto, M. Ikai, and K-I. Tanaka, Chem. Phys. Letters 292 (1998) 500.

    Google Scholar 

  26. Y. Matsumoto, Y. Okawa, K. Suzuki, K. Mukai, and K-I. Tanaka, J. Am. Chem. Soc.,118 (1996) 9676.

    Google Scholar 

  27. H. Kohguchi, Y. Ogi, and T. Suzuki, Phys. Chem. Chem. Phys.10 (2008) 7222.

    Google Scholar 

  28. D.P. Masson, E.J. Lanzendorf, A.C. Kummel, Phys. Rev. Lett., 74 (1995) 1799.

    Google Scholar 

  29. D.P. Masson, E.J. Lanzendorf, A.C. Kummel, J. Chem. Phys., 102 (1995) 9096.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tanaka, Ki. (2017). Spatial Distribution of Molecules Desorbing with Surface Reaction. In: Dynamic Chemical Processes on Solid Surfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2839-7_8

Download citation

Publish with us

Policies and ethics