Skip to main content

Surface Structures and the Crystal Habit of Growing Particles

  • Chapter
  • First Online:
Dynamic Chemical Processes on Solid Surfaces
  • 586 Accesses

Abstract

A truncated single-crystal surface varies to a more stable two-dimensional array of atoms by raising the temperature. On the other hand, metal particles may grow via a two-dimensional precursor array of atoms. The (1 × 1) Au(111), Au(110), and Au(100) surfaces undergo reconstruction in electrolyte solutions at a certain negative electrode potential (vs. SCE). The icosahedral or decahedral Au particles are preferentially grown on an electrode held at the same negative electrode potential making reconstruction of Au crystal surfaces. The result suggests that metal particles may grow via precursor states of metal array which are similar to two-dimensional array of the reconstructed surfaces. Multi-twin Pt particles are also formed at highly negative electrode potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Borg, A.-M. Hilmen, and E. Bergene, Surf. Sci., 306 (1994) 10.

    Google Scholar 

  2. C.A. Lang, M.M. Dovek, J. Nogami, and C.F. Quate, Surf. Sci., 224 (1989) L947.

    Google Scholar 

  3. B. Voigtländer, G. Meyer, and N.M. Amer, Phys. Rev. B 44 (1991) 10354.

    Google Scholar 

  4. B. Voigtländer, G. Meyer, and N.M. Amer, Surf. Sci. Lett. 255 (1991) L529.

    Google Scholar 

  5. D.D. Chambliss, R.J. Wilson, and S. Chang, Phys. Rev. Lett. 66 (1991) 1721.

    Google Scholar 

  6. D.D. Chambliss and R.J. Wilson, J. Vac. Sci. Technol. B 9 (1991) 928.

    Google Scholar 

  7. A. Hamelin, J. Electroanal. Chem., 142 (1982) 299.

    Google Scholar 

  8. M.D. Kolb, G. Lehmpfuhl, and M.S. Zei, J. Electroanal. Chem., 179 (1984) 289.

    Google Scholar 

  9. A. Hamelin, X. Gao, M.J. Weaver, J. Electroanal. Chem., 323 (1992) 361.

    Google Scholar 

  10. X. Gao and M.J. Weaver, Surf. Sci. 313 (1994) L 775.

    Google Scholar 

  11. D-L. Lu, Y. Okawa, K. Suzuki, and K-I. Tanaka, Surf. Sci., 325 (1995) L397.

    Google Scholar 

  12. D-L. Lu, Y. Okawa, M. Ichihara, A. Aramata, and K-I. Tanaka, J. Electroanal. Chem., 406 (1996) 101.

    Google Scholar 

  13. S. Trasatti, J. Electroanal. Chem. 150 (1983) 1.

    Google Scholar 

  14. S-C. Chang, X. Xiang, J.D. Roth, and M.J. Weaver, J. Phys. Chem, 95 (1991) 5378.

    Google Scholar 

  15. P-Y. Gao, W. Kunath, H. Gleiter, and K. Weiss, Z. Phys. D 12 (1989) 119.

    Google Scholar 

  16. S. Ino, J. Phys. Soc. Jpn, 21 (1966) 346; S. Ino and S. Ogawa, J. Phys. Soc. Jpn, 22 (1967) 1365.

    Google Scholar 

  17. C.M. Wayman and T.P. Darby, J. Cryst. Growth, 28 (1975) 55.

    Google Scholar 

  18. D-L. Lu and K-I. Tanaka, J. Phys. Chem. B 101 (1997) 4030.

    Google Scholar 

  19. D-L. Lu, K-I. Tanaka, Surf. Sci., 373 (1997) L339.

    Google Scholar 

  20. M.H. Holzle, U. Retter and D.M Kolb, J. Electroanal. Chem., 364 (1994) 286.

    Google Scholar 

  21. D.M. Kolb, Adv. Electrochem., 11 (1978) 125.

    Google Scholar 

  22. I.H. Omar, H.J. Pauling, K. Juttner, J. Electrochem. Soc., 140 (1993) 2187.

    Google Scholar 

  23. S. Manne, P.K. Hansma, J. Massie, V.B. Elings, A.A. Gewirth, Science, 251 (1991) 183.

    Google Scholar 

  24. D-L. Lu and K-I. Tanaka, J. Electroanal. Chem., 430 (1997) 69.

    Google Scholar 

  25. D-L. and K-I. Tanaka J. Solid Electrochem. 1 (1997) 187.

    Google Scholar 

  26. D-L. Lu and K-I. Tanaka, Surf. Sci.,,409 (1998) 283.

    Google Scholar 

  27. D-L. Lu and K-I. Tanaka, J. Electrochem. Soc., 143 (1996) 2105.

    Google Scholar 

  28. D-L. Lu and K-I. Tanaka, Langmuir, 18 (2002) 3226.

    Google Scholar 

  29. D-L. Lu and K-I. Tanaka, Phys. Rev. B 55 (1997) 13865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tanaka, Ki. (2017). Surface Structures and the Crystal Habit of Growing Particles. In: Dynamic Chemical Processes on Solid Surfaces. Springer, Singapore. https://doi.org/10.1007/978-981-10-2839-7_2

Download citation

Publish with us

Policies and ethics