Skip to main content

Nitrogenation Strategy for the Synthesis of N-Heterocyclic Compounds

  • Chapter
  • First Online:
  • 779 Accesses

Abstract

Nitrogen-containing heterocyclic compounds are ubiquitous in numerous natural and synthetic bioactive molecules. Nitrogenation strategy is one of the emerging strategies that is currently attracting tremendous attention with the aim to provide alternative highly efficient and concise ways for the construction of N-heterocyclic compounds especially from simple hydrocarbon substrates through C–H/C–C bond cleavage. In this chapter, the recent developments of facile synthesis of N-heterocyclic compounds via nitrogenation strategy are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eicher T, Hauptmann S (eds) (2003) The chemistry of heterocycles: structure, reactions, synthesis, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kumari S, Kishore D, Paliwal S, Chauhan R, Dwivedi J, Mishra A (2016) Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol Divers 20(1):185–232

    Article  CAS  Google Scholar 

  3. Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V (2013) Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem Rev 113(5):3084–3213

    Article  CAS  Google Scholar 

  4. Buntrock RE (2012) Review of heterocyclic chemistry, 5th edition. J Chem Educ 89(11):1349–1350

    Article  CAS  Google Scholar 

  5. Lang S, Murphy JA (2006) Azide rearrangements in electron-deficient systems. Chem Soc Rev 35(2):146–156

    Article  CAS  Google Scholar 

  6. Burtoloso ACB, Dias RMP, Bernardim B (2015) α, β-Unsaturated diazoketones as useful platforms in the synthesis of nitrogen heterocycles. Acc Chem Res 48(4):921–934

    Article  CAS  Google Scholar 

  7. Hu B, DiMagno SG (2015) Reactivities of vinyl azides and their recentapplications in nitrogen heterocycle synthesis. Org Biomol Chem 13(13):3844–3855

    Article  CAS  Google Scholar 

  8. Bower JF, Rujirawanich J, Gallagher T (2010) N-Heterocycle construction via cyclic sulfamidates. Applications in synthesis. Org Biomol Chem 8(7):1505–1519

    Article  CAS  Google Scholar 

  9. Chiba S (2012) Application of organic azides for the synthesis of nitrogen-containing molecules. Synlett 23(1):21–44

    Article  CAS  Google Scholar 

  10. Cravotto G, Tagliapietra S, Caporaso M, Garella D, Borretto E.; Di Stilo A (2013) Recent advances in the cyclyzation of N–heterocycles: the role of enabling techniques. Chem Heterocycl Comp 49(6): 811–826

    Google Scholar 

  11. Izumi M (2006) Solid-phase organic synthesis of heterocyclic compounds. J Pestic Sci 31(1):1–5

    Google Scholar 

  12. Louillat ML, Patureau FW (2014) Oxidative C–H amination reactions. Chem Soc Rev 43(3):901–910

    Article  CAS  Google Scholar 

  13. Shin K, Kim H, Chang S (2015) Transition-metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc Chem Res 48(4):1040–1052

    Article  CAS  Google Scholar 

  14. Davies HML, Long MS (2005) Recent advances in catalytic intramolecular C–H aminations. Angew Chem Int Ed 44(23):3518–3520

    Article  CAS  Google Scholar 

  15. Kim H, Chang S (2016) Transition metal-mediated direct C–H amination of hydrocarbons with amine reactants: the most desirable but challenging C–N bond formation approach. ACS Catal 6(4):2341–2351

    Article  CAS  Google Scholar 

  16. Jiao J, Murakami K, Itami K (2016) Catalytic methods for aromatic C–H amination: an ideal strategy for nitrogen-based functional molecules. ACS Catal 6(2):610–633

    Article  CAS  Google Scholar 

  17. Gephart RT III, Warren TH (2012) Copper-catalyzed sp 3 C–H amination. Organometallics 31(22):7728–7752

    Article  CAS  Google Scholar 

  18. Crabtree RH (1985) The organometallic chemistry of alkanes. Chem Rev 85(4):245–269

    Article  CAS  Google Scholar 

  19. Rybtchinski B, Milstein D (1999) Metal insertion into C–C bonds in solution. Angew Chem Int Ed 38(7):870–883

    Article  Google Scholar 

  20. Jun CH (2004) Transition metal-catalyzed carbon–carbon bond activation. Chem Soc Rev 33(9):610–618

    Article  CAS  Google Scholar 

  21. Tobisu M, Chatani N (2008) Catalytic reactions involving the cleavage of carbon–cyano and carbon–carbon triple bonds. Chem Soc Rev 37(2):300–307

    Article  CAS  Google Scholar 

  22. Chen F, Wang T, Jiao N (2014) Recent Advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem Rev 114(17):8613–8661

    Article  CAS  Google Scholar 

  23. Dermenci A, Coe JW, Dong G (2014) Direct activation of relatively unstrained carbon–carbon bonds in homogeneous systems. Org Chem Front 1(5):567–581

    Article  CAS  Google Scholar 

  24. Liu H, Feng M, Jiang X (2014) Unstrained carbon–carbon bond cleavage. Chem Asian J 9(12):3360–3389

    Article  CAS  Google Scholar 

  25. Souillart L, Cramer N (2015) Catalytic C–C bond activations via oxidative addition to transition metals. Chem Rev 115(17):9410–9464

    Article  CAS  Google Scholar 

  26. Thansandote P, Lautens M (2009) Construction of nitrogen-containing heterocycles by C–H bond functionalization. Chem Eur J 15(24):5874–5883

    Article  CAS  Google Scholar 

  27. Mei TS, Kou L, Ma S, Engle KM, Yu JQ (2012) Heterocycle formation via palladium-catalyzed C–H functionalization. Synthesis 44(12):1778–1791

    Google Scholar 

  28. Nack WA, Chen G (2015) Syntheses of nitrogen-containing heterocycles via palladium-catalyzed intramolecular dehydrogenative C–H amination. Synlett 26(18):2505–2511

    Article  CAS  Google Scholar 

  29. Mu Y, Zhu C, Shi Z (2016) Memory of chirality (MOC) in intramolecular sp 3 C–H amination. Synlett 27(04):486–492

    CAS  Google Scholar 

  30. Subramanian P, Rudolf GC, Kaliappan KP (2016) Recent trends in copper-catalyzed C–H amination routes to biologically important nitrogen scaffolds. Chem Asian J 11(2):168–192

    Article  CAS  Google Scholar 

  31. Hassan S, Müller TJJ (2015) Multicomponent syntheses based upon copper-catalyzed alkyne-azide cycloaddition. Adv Synth Catal 357(4):617–666

    Article  CAS  Google Scholar 

  32. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev 116(5):3086–3240

    Article  CAS  Google Scholar 

  33. Alonso F, Moglie Y, Radivoy G (2015) Copper nanoparticles in click chemistry. Acc Chem Res 48(9):2516–2528

    Article  CAS  Google Scholar 

  34. Brittain WDG, Buckley BR, Fossey JS (2016) Asymmetric copper-catalyzed azide–alkyne cycloadditions. ACS Catal 6(6):3629–3636

    Article  CAS  Google Scholar 

  35. Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262

    Article  CAS  Google Scholar 

  36. Singh MS, Chowdhury S, Koley S (2016) Advances of azide–alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron 72(35):5257–5283

    Article  CAS  Google Scholar 

  37. Spiteri C, Moses JE (2010) Copper-catalyzed azide–alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed 49(1):31–33

    Article  CAS  Google Scholar 

  38. Agalave SG, Maujan SR, Pore VS (2011) Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 6(10):2696–2718

    Google Scholar 

  39. Ackermann L, Potukuchi HK (2010) Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C–H bond functionalization. Org Biomol Chem 8(20):4503–4513

    Article  CAS  Google Scholar 

  40. Qiu G, Kuang Y, Wu J (2014) N-imide ylide-based reactions: C–H functionalization, nucleophilic addition and cycloaddition. Adv Synth Catal 356(17):3483–3504

    Article  CAS  Google Scholar 

  41. Menon RS, Nair V (2014) 4.21 Intramolecular 1,3-dipolar cycloadditions of alkenes, alkynes, and allenes. Compr Org Synth II 4:1281–1341

    Article  CAS  Google Scholar 

  42. Huang H, Cai J, Deng GJ (2016) O-Acyl oximes: versatile building blocks for N-heterocycle formation in recent transition metal catalysis. Org Biomol Chem 14(5):1519–1530

    Article  CAS  Google Scholar 

  43. Sadjadi S, Heravi MM, Nazari N (2016) Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 6(58):53203–53272

    Article  CAS  Google Scholar 

  44. Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31(5):247–258

    Article  CAS  Google Scholar 

  45. By Nair, Vasu from chemistry of heterocyclic compounds (Chichester, United Kingdom) (1983) 42(Small Ring Heterocycl, Pt 1): 215–332

    Google Scholar 

  46. Zwanenburg B, ten Holte P (2001) The synthetic potential of three-membered ring Aza-heterocycles. Top Curr Chem 216, 93–124

    Google Scholar 

  47. Brandi A, Cicchi S, Cordero FM (2008) Novel syntheses of azetidines and azetidinones. Chem Rev 108(9):3988–4035

    Google Scholar 

  48. Bott TM, West FG (2012) Preparation and synthetic applications of azetidines. Heterocycles 84(1):223–264

    Article  CAS  Google Scholar 

  49. Davies HML, Manning JR (2008) Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451:417–424

    Article  CAS  Google Scholar 

  50. Müller P, Fruit C (2003) Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. Chem Rev 103(8):2905–2919

    Google Scholar 

  51. Doyle MP (2004) Synthetic carbene and nitrene chemistry. In: Moss RA, Platz MS and Jones MJ (eds) Reac Int Chem, John Wiley & Sons, Inc., Hoboken, N. J., pp 561–592

    Google Scholar 

  52. Degennaro L, Trinchera P, Luisi R (2014) Recent advances in the stereoselective synthesis of aziridines. Chem Rev 114(16):7881–7929

    Google Scholar 

  53. Adams CS, Weatherly CD, Burke EG, Schomaker JM (2014) The conversion of allenes to strained three-membered heterocycles. Chem Soc Rev 43(9):3136–3163

    Article  CAS  Google Scholar 

  54. He G, Zhao Y, Zhang S, Lu C, Chen G (2012) Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp 3)–H and C(sp 2)–H bonds at γ and δ positions. J Am Chem Soc 134(1):3–6

    Article  CAS  Google Scholar 

  55. He G, Lu G, Guo Z, Liu P, Chen G (2016) Benzazetidine synthesis via palladium-catalysed intramolecular C–H amination. Nat Chem. doi:10.1038/NCHEM.2585

    Google Scholar 

  56. Goriya Y, Ramana CV (2014) 2-Aroylindoles from o-bromochalcones via Cu(I)-catalyzed SNAr with an azide and intramolecular nitrene C–H insertion. Chem Commun 50(58):7790–7792

    Article  CAS  Google Scholar 

  57. Goriya Y, Ramana CV (2013) Synthesis of pseudo-indoxyl derivatives via sequential Cu-catalyzed SNAr and Smalley cyclization. Chem Commun 49(57):6376–6378

    Article  CAS  Google Scholar 

  58. Kulkarni AM, Srinivas K, Deshpande MV, Ramana CV (2016) Cu-catalyzed sequential C–N bond formations: expeditious synthesis of tetracyclic indoloindol-3-ones. Org Chem Front 3(1):43–46

    Article  CAS  Google Scholar 

  59. Yi Y, Lee H, Jun CH (2016) Rh(III)-catalyzed C–H activation reactions forming 1H-isoindoles containing a quaternary carbon center from aryl ketones or benzylamines. Chem Commun 52(66):10171–10174

    Article  CAS  Google Scholar 

  60. Zhang J, Gao Q, Wu X, Geng X, Wu Y-D, Wu A (2016) Dual roles of methyl ketones in Radziszewski-type reaction: formal [2 + 1+1 + 1] synthesis of 1,2,5-trisubstituted imidazoles. Org Lett 18(7):1686–1689

    Article  CAS  Google Scholar 

  61. Xie Z, Deng J, Qiu Z, Li J, Zhu Q (2016) Copper-mediated C(sp 3)–H azidation with Me3 SiN3: synthesis of imidazoles from ketones and aldehydes. Chem Commun 52(38):6467–6470

    Article  CAS  Google Scholar 

  62. Kim Y, Kumar MR, Park N, Heo Y, Lee S (2011) Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C–N bond formation. J Org Chem 76(23):9577–9583

    Article  CAS  Google Scholar 

  63. Xie Z, Peng J, Zhu Q (2016) Copper-mediated C(sp 3) C–H amination in a multiple C–N bond-forming strategy for the synthesis of N-heterocycles. Org Chem Front 3(1):82–86

    Article  CAS  Google Scholar 

  64. Wang H, Kuang Y, Wu J (2012) 2-Alkynylbenzaldehyde: a versatile building block for the generation of cyclic compounds. Asian J Org Chem 1(4):302–312

    Article  CAS  Google Scholar 

  65. Yu X, Ye S, Wu J (2010) Facile assembly of H-pyrazolo [5,1-a]isoquinolines via silver triflate-catalyzed one-pot tandem reaction of 2-alkynyl-benzaldehyde, sulfonohydrazide, and ketone or aldehyde. Adv Synth Catal 352(11–12):2050–2056

    Article  CAS  Google Scholar 

  66. Ye S, Yang X, Wu J (2010) Silver triflate-catalyzed three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, and α, β-unsaturated carbonyl compound. Chem Commun 46(49):5238–5240

    Article  CAS  Google Scholar 

  67. Chen Z, Wu J (2010) Efficient generation of biologically active H-Pyrazolo[5,1-a] isoquinolines via multicomponent reaction. Org Lett 12(21):4856–4859

    Article  CAS  Google Scholar 

  68. Yu X, Yang Q, Lou H, Peng Y, Wu J (2011) An efficient approach to pyrazolo[5,1-a]isoquinolin-2-amines via a silver(I)-catalyzed three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, and nitrile. Org Biomol Chem 9(20):7033–7037

    Article  CAS  Google Scholar 

  69. Li S, Wu J (2011) Synthesis of H-pyrazolo[5,1-a]isoquinolines via copper(II)-catalyzed oxidation of an aliphatic C–H bond of tertiary amine in air. Org Lett 13(4):712–715

    Article  CAS  Google Scholar 

  70. Guo S, Wang J, GuoD Zhang X, Fan X (2012) Synthesis of 3,5-disubstitutedpyrazoles via cyclocondensation of 1,2-allenic ketones with hydrazines: application to the synthesis of 5-(5-methyl-pyrazol-3-yl)-29-deoxycytidine. RSC Adv 2(9):3772–3777

    Article  CAS  Google Scholar 

  71. Tian M, He Y, Zhang X, Fan X (2015) Synthesis of Pyrazolo[5,1-a]isoindoles and Pyrazolo[5,1–a]isoindole-3-carboxamides through one-pot cascade reactions of 1–(2-Bromophenyl)buta-2,3-dien-1-ones with isocyanide and hydrazine or acetohydrazide. J Org Chem 80(15):7447–7455

    Article  CAS  Google Scholar 

  72. Fan X, Yan M, Wang Y, Zhang X (2015) Synthesis of pyrazolo[5,1-a]isoquinolines and 8-methylenepyrazolo[5,1-a]isoindoles via regioselective C–C coupling and alkyne hydroamination. J Org Chem 80(21):10536–10547

    Google Scholar 

  73. Yang X, Luo Y, Jin Y, Liu H, Jiang Y, Fu H (2012) Concise and efficient one-pot copper-catalyzed synthesis of H-pyrazolo[5,1-a]isoquinolines. RSC Advances 2(22):8258–8261

    Article  CAS  Google Scholar 

  74. Xu S-X, HaoL Wang T, Ding Z-C, Zhan Z-P (2013) Chemoselective synthesis of substituted pyrazoles through AgOTf-catalyzed cascade propargylic substitution–cyclization–aromatization. Org Biomol Chem 11(2):294–298

    Article  CAS  Google Scholar 

  75. Huisgen R (1984) 1,​3-Dipolar cycloaddition - introduction, survey, mechanism. In: Padwa A (ed) 1,3-Dipolar cycloaddition chemistry. Wiley, New York

    Google Scholar 

  76. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  77. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  78. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  CAS  Google Scholar 

  79. Kamata K, Nakagawa Y, Yamaguchi K, Mizuno N (2008) 1,3-Dipolar cycloaddition of organic azides to alkynes by a dicopper-substituted silicotungstate. J Am Chem Soc 130(46):15304–15310

    Article  CAS  Google Scholar 

  80. Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew Chem Int Ed 48(43):8018–8021

    Article  CAS  Google Scholar 

  81. Ning Y, Wu N, Yu H, Liao P, Li X, Bi X (2015) Silver-catalyzed tandem hydroazidation/alkyne–azide cycloaddition of diynes with TMS-N3: an easy access to 1,5-fused 1,2,3-triazole frameworks. Org Lett 17(9):2198–2201

    Article  CAS  Google Scholar 

  82. Sau M, Rodríguez-Escrich C, Pericàs MA (2011) Copper-free intramolecular alkyne–azide cycloadditions leading to seven-membered heterocycles. Org Lett 13(19):5044–5047

    Article  CAS  Google Scholar 

  83. Yan J, Zhou F, Qin D, Cai T, Ding K, Cai Q (2012) Synthesis of [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones through copper-catalyzed tandem reactions of N-(2-haloaryl)propiolamides with sodium azide. Org Lett 14(5):1262–1265

    Article  CAS  Google Scholar 

  84. Pericherla K, Jha A, Khungar B, Kumar A (2013) Copper-catalyzed tandem azide–alkyne cycloaddition, ullmann type C–N coupling, and intramolecular direct arylation. Org Lett 15(17):4304–4307

    Article  CAS  Google Scholar 

  85. Liu Z, Zhu D, Luo B, Zhang N, Liu Q, Hu Y, Pi R, Huang P, Wen S (2014) Mild Cu(I)-catalyzed cascade reaction of cyclic diaryliodoniums, sodiumazide, and alkynes: efficient synthesis of triazolophenanthridines. Org Lett 16:5600–5603

    Google Scholar 

  86. Quan X-J, Ren Z-H, Wang Y-Y, Guan Z-H (2014) p-Toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4-aryl-NH-1,2,3-triazoles. Org Lett 16(21):5728–5731

    Article  CAS  Google Scholar 

  87. Shen T, Huang X, Liang YF, Jiao N (2015) Cu-catalyzed transformation of alkynes and alkenes with azideand dimethyl sulfoxide reagents. Org Lett 17(24):6186–6189

    Google Scholar 

  88. Khatun N, Modi A, Ali W, Patel KB (2015) Palladium-catalyzed synthesis of 2-aryl-2H-benzotriazoles from azoarenes and TMSN3. J Org Chem 80(19):9662–9670

    Article  CAS  Google Scholar 

  89. Li J, Zhou H, Zhang J, Yang H, Jiang G (2016) AgNO3 as nitrogen source for rhodium(III)-catalyzed synthesis of 2-aryl-2H-benzotriazoles from azobenzenes. Chem Commun 52(61):9589–9592

    Article  CAS  Google Scholar 

  90. Yu DG, Suri M, Glorius F (2013) RhIII/CuII-cocatalyzed synthesis of 1H-indazoles through C–H amidation and N–N bond formation. J Am Chem Soc 135(24):8802–8805

    Article  CAS  Google Scholar 

  91. Lian Y, Hummel JR, Bergman RG, Ellman JA (2013) Facile synthesis of unsymmetrical acridines and phenazines by a Rh(III)-catalyzed amination/cyclization/aromatization cascade. J Am Chem Soc 135(34):12548–12551

    Article  CAS  Google Scholar 

  92. Quintin J, Lewin G (2004) Semisynthesis of linarin, acacetin, and 6-iodoapigenin derivatives from diosmin. J Nat Prod 67(9):1624–1627

    Article  CAS  Google Scholar 

  93. Fettes A, Carreira EM (2002) Formal total synthesis of leucascandrolide A. Angew Chem Int Ed 41(21):4098–4101

    Article  CAS  Google Scholar 

  94. Chen F, Qin C, Cui Y, Jiao N (2011) Implanting nitrogen into hydrocarbon molecules through C–H and C–C bond cleavages: a direct approach to tetrazoles. Angew Chem Int Ed 50(48):11487–11491

    Article  CAS  Google Scholar 

  95. Gaydou M, Echavarren AM (2013) Gold-catalyzed synthesis of tetrazoles from alkynes by C–C bond cleavage. Angew Chem Int Ed 52(50):13468–13471

    Article  CAS  Google Scholar 

  96. Qin C, Su Y, Shen T, Shi X, Jiao N (2016) Splitting a substrate into three parts: gold-catalyzed nitrogenation of alkynes by C–C and C–C bond cleavage. Angew Chem Int Ed 55(1):350–354

    Article  CAS  Google Scholar 

  97. Roth HJ, Kleemann A (1988) Drug synthesis in pharmaceutical chemistry, vol 1. Wiley, New York

    Google Scholar 

  98. Joule JA, Mills K (2000) Heterocyclic chemistry, 4th edn. Wiley, Cambridge, pp 63–120

    Google Scholar 

  99. Sagitullin RS, Shkil GP, Nosonova II, Ferber AA (1996) Chichibabin syntheses of pyridine bases. Khim Geterotsikl Soedi 2:147–161

    Google Scholar 

  100. Méndez JM, Flores B, León F, Martínez ME, Vázquez A, García GA, Salmón M (1996) A new synthesis of monosubstituted succinaldehydes and 3-substituted pyrroles from acetonitriles. Formal synthesis of 2,3-dihydro-7-methyl-2H-pyrrolizidin-1-one (Danaidone), a semiochemical of danaid butterflies. Tetrahedron Lett 37(24):4099–4102

    Article  Google Scholar 

  101. Chichibabin AE (1924) Über Kondensation der Aldehyde mit Ammoniak zu Pyridinbasen. J für Praktische Chemie 107(1–4):122–128

    CAS  Google Scholar 

  102. Abramovitch RA, Helmer F, Saha JG (1964) Mechanism of the Chichibabin reaction. Tetrahedron Lett 5(46):3445–3447

    Google Scholar 

  103. Eliel EL, McBride RT, Kaufmann S (1953) Abnormal chichibabin reactions. The condensation of phenylacetaldehyde and homoveratric aldehyde with ammonia. J Am Chem Soc 75(17):4291–4296

    Article  CAS  Google Scholar 

  104. Yu LB, Chen D, Li J, Ramirez J, Wang PG (1997) Lanthanide-promoted reactions of aldehydes and amine hydrochlorides in aqueous solution. synthesis of 2,3-dihydropyridinium and pyridinium derivatives. J Org Chem 62(1):208–211

    Article  CAS  Google Scholar 

  105. Snider BB, Neubert BJ (2005) Syntheses of ficuseptine, juliprosine, and juliprosopine by biomimetic intramolecular chichibabin pyridine syntheses. Org Lett 7(13):2715–2718

    Article  CAS  Google Scholar 

  106. Burns NZ, Baran PS (2008) On the origin of the haouamine alkaloids. Angew Chem Int Ed 47:205–208

    Article  CAS  Google Scholar 

  107. Li Z, Huang X, Chen F, Zhang C, Wang X, Jiao N (2015) Cu-catalyzed concise synthesis of pyridines and 2-(1H)-pyridones from acetaldehydes and simple nitrogen donors. Org Lett 17(3):584–587

    Article  CAS  Google Scholar 

  108. Lim S-G, Lee JH, Moon CW, Hong J-B, Jun C-H (2003) Rh(I)-catalyzed direct ortho-alkenylation of aromatic ketimines with alkynes and its application to the synthesis of isoquinoline derivatives. Org Lett 5(15):2759–2761

    Article  CAS  Google Scholar 

  109. Yang DQ, Burugupalli S, Daniel D, Chen Y (2012) Microwave-assisted one-pot synthesis of isoquinolines, furopyridines, and thienopyridines by palladium-catalyzed sequential Coupling–Imination–Annulation of 2-bromoarylaldehydes with terminal acetylenes and ammonium acetate. J Org Chem 77(9):4466–4472

    Article  CAS  Google Scholar 

  110. Zheng L, Ju J, Bin Y, Hua R (2012) Synthesis of isoquinolines and heterocycle-fused pyridines via three-component cascade reaction of aryl ketones, hydroxylamine, and alkynes. J Org Chem 77(13):5794–5800

    Article  CAS  Google Scholar 

  111. Lee H, Sim YK, Park JW, Jun CH (2014) Microwave-assisted, rhodium(III)-catalyzed N-annulation reactions of aryl and α, β-unsaturated ketones with alkynes. Chem Eur J 20(1):323–333

    Article  CAS  Google Scholar 

  112. An XD, Yu S (2015) Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and o-acyl hydroxylamine. Org Lett 17(11):2692–2695

    Article  CAS  Google Scholar 

  113. Tang C, Yuan Y, Jiao N (2015) Metal-free nitrogenation of 2-acetylbiphenyls: expeditious synthesis of phenanthridines. Org Lett 17(9):2206–2209

    Article  CAS  Google Scholar 

  114. Yan Y, Zhang Y, Feng C, Zha Z, Wang Z (2012) Selective iodine-catalyzed intermolecular oxidative amination of C(sp 3)–H bonds with ortho-carbonyl-substituted anilines to give quinazolines. Angew Chem Int Ed 51(32):8077–8081

    Article  CAS  Google Scholar 

  115. Jia F-C, Zhou Z-W, Xu C, Cai Q, Li D-K, Wu A-X (2015) Expeditious synthesis of 2-phenylquinazolin-4-amines via a Fe/Cu relay-catalyzed domino strategy. Org Lett 17(17):4236–4239

    Article  CAS  Google Scholar 

  116. Xu C, Jia FC, Zhou ZW, Zheng SJ, Li H, Wu AX (2016) Copper-catalyzed multicomponent domino reaction of 2-bromoaldehydes, benzylamines, and sodium azide for the assembly of quinazoline derivatives. J Org Chem 81(7):3000–3006

    Article  CAS  Google Scholar 

  117. Ma H, Li D, Yu W (2016) Synthesis of quinoxaline derivatives via tandem oxidative azidation/cyclization reaction of N-arylenamines. Org Lett 18(4):868–871

    Article  CAS  Google Scholar 

  118. Chen T, Chen X, Wei J, Lin D, Xie Y, Zeng W (2016) Copper-catalyzed cascade cycloamination of α-Csp 3–H bond of N-aryl ketimines with azides: access to quinoxalines. Org Lett 18(9):02078–02081

    Article  CAS  Google Scholar 

  119. Sagar A, Vidaycharan S, Shinde AH, Sharada DS (2016) Hypervalentiodine(III)-promoted N-incorporationinto N-aryl vinylogouscarbamates to quinoxalinediesters: access to 1,4,5,8-tetraazaphenanthrene. Org BiomolChem 14(17):4018–4022

    Article  CAS  Google Scholar 

  120. Chen F, Huang X, Li X, Shen T, Zou M, Jiao N (2014) Dehydrogenative N-incorporation: a direct approach to quinoxaline N-oxides under mild conditions. Angew Chem Int Ed 53(39):10495–10499

    Article  CAS  Google Scholar 

  121. Sasaki T, Eguchi S, Katada T, Hiroaki O (1977) Synthesis of adamantane derivatives. 37. A convenient and efficient synthesis of 1-azidoadamantane and related bridgehead azides, and some of their reactions. J Org Chem 42(23):3741–3743

    Article  CAS  Google Scholar 

  122. Ou Y, Jiao N (2013) Recyclable copper catalyzed nitrogenation of biphenyl halides: a direct approach to carbazoles. Chem Commun 49(33):3473–3475

    Article  CAS  Google Scholar 

  123. Zheng Q-Z, Feng P, Liang Y-F, Jiao N (2013) Pd-catalyzed tandem C–H azidation and N–N bond formation of arylpyridines: a direct approach to pyrido[1,2–b]indazoles. Org Lett 15(16):4262–4265

    Article  CAS  Google Scholar 

  124. Jia F-C, Xu C, Zhou Z-W, Cai Q, Li D-K, Wu A-X (2015) Consecutive cycloaddition/SNAr/reduction/cyclization/oxidation sequences: a copper-catalyzed multicomponent synthesis of fused N-heterocycles. Org Lett 17(11):2820–2823

    Article  CAS  Google Scholar 

  125. Zhao Y, Hu Y, Wang H, Li X, Wan B (2016) Transition-metal controlled diastereodivergent radical cyclization/azidation cascade of 1,7-enynes. J Org Chem 81(10):4412–4420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zheng, QZ., Jiao, N. (2017). Nitrogenation Strategy for the Synthesis of N-Heterocyclic Compounds. In: Jiao, N. (eds) Nitrogenation Strategy for the Synthesis of N-containing Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-2813-7_7

Download citation

Publish with us

Policies and ethics