Skip to main content

Nitrogenation Strategy for the Synthesis of Nitriles

  • Chapter
  • First Online:
Nitrogenation Strategy for the Synthesis of N-containing Compounds

Abstract

In this chapter, the recent developments of facile nitrile synthesis via N atom incorporation are summarized. Simple hydrocarbons, such as alkenes, and alkynes, have been converted to nitriles through C–H/C–C bond cleavage. Mechanistic studies and investigations of substrate scope in this nitrogenation strategy exhibit its broad application in chemistry community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunch AW (1998) Nitriles. In: Rehm HJ, Reed G (eds) Biotechnology: biotransformations I, vol 8a, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  2. Kleemann A, Engel J, Kutscher B, Reichert D (2001) Pharmaceutical substances: syntheses, patents, applications, 4th edn. Georg Thieme, Stuttgart

    Google Scholar 

  3. Wang M-X (2015) Enantioselective biotransformations of nitriles in organic synthesis. Acc Chem Res 48(3):602–611

    Article  CAS  Google Scholar 

  4. Kurono N, Ohkuma T (2016) Catalytic asymmetric cyanation reactions. ACS Catal 6(2):989–1023

    Article  CAS  Google Scholar 

  5. Ellis GP, Romney-Alexander TM (1987) Cyanation of aromatic halides. Chem Rev 87(4):779–794

    Article  CAS  Google Scholar 

  6. Wang T, Jiao N (2014) Direct approaches to nitriles via highly efficient nitrogenation strategy through C–H or C–C bond cleavage. Acc Chem Res 47(4):1137–1145

    Article  CAS  Google Scholar 

  7. Liang Y, Liang Y-F, Jiao N (2015) Cu- or Fe-catalyzed C–H/C–C bond nitrogenation reactions for the direct synthesis of N-containing compounds. Org Chem Front 2(4):403–415

    Article  CAS  Google Scholar 

  8. Hodgson HH (1947) The Sandmeyer reaction. Chem Rev 40(2):251–277

    Article  CAS  Google Scholar 

  9. Cowdrey WA, Davies DS (1952) Sandmeyer and related reactions. Q Rev (Lond) 6:358–379

    Article  CAS  Google Scholar 

  10. Wulfman DS (1978) Synthetic applications of diazonium ions. In: Patai S (ed) The chemistry of diazonium and diazo groups, Part 1. Wiley, London, pp 247–339

    Google Scholar 

  11. Galli C (1988) Radical reactions of arene diazonium ions: an easy entry into the chemistry of the aryl radical. Chem Rev 88(5):765–792

    Article  CAS  Google Scholar 

  12. Merkushev EB (1988) Advances in the synthesis of iodo aromatic compounds. Synthesis 12:923–937

    Article  Google Scholar 

  13. Bohlmann R (1991) Synthesis of halides. Comp Org Synth 6:203–223 (Trost BM, Fleming I (eds); Pergamon, Oxford)

    Google Scholar 

  14. Koelsch CF, Whitney AG (1941) The Rosenmund–von Braun nitrile synthesis. J Org Chem 06(6):795–803

    Article  CAS  Google Scholar 

  15. Kim J, Stahl SS (2013) Cu/nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature. ACS Catal 3(7):1652–1656

    Article  CAS  Google Scholar 

  16. Dennis WE (1970) Nitrile synthesis. The dehydration of amides by silazanes, chlorosilanes, alkoxysilanes, and aminosilanes. J Org Chem 35(10):3253–3255

    Article  CAS  Google Scholar 

  17. Singh MK, Lakshman MK (2009) A simple synthesis of nitriles from aldoximes. J Org Chem 74(8):3079–3084

    Article  CAS  Google Scholar 

  18. Wolff H (1946) Schmidt reaction. Org React 3(8):307–336

    Google Scholar 

  19. Smith PAS (1963) Rearrangements involving migration to an electron-deficient nitrogen or oxygen. In: Mayo P (ed) Molecular rearrangements, vol 1. Wiley, New York, pp 457–591

    Google Scholar 

  20. Shioiri T (1991) Degradation reactions. Comp Org Synth 6:795–828 (Trost BM, Fleming I (eds); Pergamon, Oxford)

    Google Scholar 

  21. Kim J, Chang S (2010) A new combined source of “CN” from N,N-dimethylformamide and ammonia in the palladium-catalyzed cyanation of aryl C–H bonds. J Am Chem Soc 132(30):10272–10274

    Article  CAS  Google Scholar 

  22. Kim S, Choi J, Shin K, Chang S (2012) Copper-mediated sequential cyanation of aryl C–B and arene C–H bonds using ammonium iodide and DMF. J Am Chem Soc 134(5):2528–2531

    Article  CAS  Google Scholar 

  23. Ren X, Chen J, Chen F, Cheng J (2011) The palladium-catalyzed cyanation of indole C–H bonds with the combination of NH4HCO3 and DMSO as a safe cyanide source. Chem Commun 47:6725–6727

    Article  CAS  Google Scholar 

  24. Koldobskii GI, Ostrovskii VA, Gidaspov BV (1978) Schmidt reaction with aldehydes and carboxylic acids. Russ Chem Rev 47(11):1084–1094

    Article  Google Scholar 

  25. Schmidt KF (1924) Über den Imin-Rest. Ber Dtsch Chem Ges 57(4):704–706

    Article  Google Scholar 

  26. Schmidt KF (1923) Angew Chem 36:511

    Google Scholar 

  27. Beckwith ALJ (1970) Synthesis of amides. In: Zabicky (ed) Chemistry amides. Wiley, New York, pp 73–185

    Google Scholar 

  28. Koldobskii GI, Tereshchenko GF, Gerasimova ES, Bagal LI (1971) Schmidt reaction with ketones. Russ Chem Rev 40(10):835–846

    Article  Google Scholar 

  29. Krow GR (1981) Nitrogen insertion reactions of bridged bicyclic ketones. Regioselective lactam formation. Tetrahedron 37(7):1283–1307

    Article  CAS  Google Scholar 

  30. Pearson WH (1996) Aliphatic azides as Lewis bases. Application to the synthesis of heterocyclic compounds. J Heterocycl Chem 33(5):1489–1496

    Article  CAS  Google Scholar 

  31. Vogler EA, Hayes JM (1979) Carbon isotopic fractionation in the Schmidt decarboxylation: evidence for two pathways to products. J Org Chem 44(21):3682–3686

    Article  CAS  Google Scholar 

  32. Richard JP, Amyes TL, Lee Y-G, Jagannadham V (1994) Demonstration of the chemical competence of an iminodiazonium ion to serve as the reactive intermediate of a Schmidt reaction. J Am Chem Soc 116(23):10833–10834

    Article  CAS  Google Scholar 

  33. Kaye PT, Mphahlele MJ, Brown ME (1995) Benzodiazepine analogs. Part 9. Kinetics and mechanism of the azidotrimethylsilane-mediated Schmidt reaction of flavanones. J Chem Soc Perkin Trans 2(4):835–838

    Article  Google Scholar 

  34. McEwen WE, Conrad WE, VanderWerf CA (1952) The Schmidt reaction applied to aldehydes and epoxides. J Am Chem Soc 74(5):1168–1171

    Article  CAS  Google Scholar 

  35. Schuerch C (1948) Preparation of vanillonitrile and vanillic acid from vanillin. J Am Chem Soc 70(6):2293–2294

    Article  CAS  Google Scholar 

  36. Rokade BV, Prabhu JR (2012) Chemoselective Schmidt reaction mediated by triflic acid: selective synthesis of nitriles from aldehydes. J Org Chem 77(12):5364–5370

    Article  CAS  Google Scholar 

  37. Nimnual P, Tummatorn J, Thongsornkleeb C, Ruchirawat S (2015) Utility of nitrogen extrusion of azido complexes for the synthesis of nitriles, benzoxazoles, and benzisoxazoles. J Org Chem 80(17):8657–8667

    Article  CAS  Google Scholar 

  38. Kagarlitskii AD, Suvorov BV, Rafikov SR (1959) Ammonolysis of benzaldehyde on mixed oxide catalysts. Zhurnal Prikladnoĭ Khimii (Sankt-Peterburg, Russian Federation) 32:388–391

    CAS  Google Scholar 

  39. Iwahara H, Kushida T, Yamaguchi S (2016) A planarized 9-phenylanthracene: a simple electron-donating building block for fluorescent materials. Chem Commun 52(6):1124–1127

    Article  CAS  Google Scholar 

  40. Mistry SN, Baker JG, Fischer PM, Hill SJ, Gardiner SM, Kellam B (2013) Synthesis and in vitro and in vivo characterization of highly β1-selective β-adrenoceptor partial agonists. J Med Chem 56(10):3852–3865

    Article  CAS  Google Scholar 

  41. Buck JS, Ide WS (1935) Veratronitrile. Org Synth 15:85

    Article  Google Scholar 

  42. Gawley RE (1988) The Beckmann reactions: rearrangements, elimination-additions, fragmentations, and rearrangement-cyclizations. In: Organic reactions, vol 35. Hoboken, NJ

    Google Scholar 

  43. Donaruma LG, Heldt WZ (1960) The Beckmann rearrangement. Org React 11:1–156

    CAS  Google Scholar 

  44. Tatsumi T (2001) Beckmann rearrangement. In: Sheldon RA, Bekkum H (eds). Wiley-VCH, Weinheim, pp 185–204

    Google Scholar 

  45. Kelly CB, Lambert KM, Mercadante MA, Ovian JM, Bailey WF, Leadbeater NE (2015) Access to nitriles from aldehydes mediated by an oxoammonium salt. Angew Chem Int Ed 54(14):4241–4245

    Article  CAS  Google Scholar 

  46. Noh J-H, Kim J (2015) Aerobic oxidative conversion of aromatic aldehydes to nitriles using a nitroxyl/NO x catalyst system. J Org Chem 80(22):11624–11628

    Article  CAS  Google Scholar 

  47. Wu Q, Luo Y, Lei A, You J (2016) Aerobic copper-promoted radical-type cleavage of coordinated cyanide anion: nitrogen transfer to aldehydes to form nitriles. J Am Chem Soc 138(9):2885–2888

    Article  CAS  Google Scholar 

  48. Sharghi H, Sarvari MH (2002) A direct synthesis of nitriles and amides from aldehydes using dry or wet alumina in solvent free conditions. Tetrahedron 58(52):10323–10328

    Article  CAS  Google Scholar 

  49. Erman MB, Snow JW, Williams MJ (2000) A new efficient method for the conversion of aldehydes into nitriles using ammonia and hydrogen peroxide. Tetrahedron Lett 41(35):6749–6752

    Article  CAS  Google Scholar 

  50. Furukawa N, Fukumura M, Akasaka T, Yoshimura T, Oae S (1980) A convenient preparation of nitriles by reaction of free sulfimide with aldehydes. Tetrahedron Lett 21(8):761–762

    Article  CAS  Google Scholar 

  51. Georg GI, Pfeifer SA (1985) A one-step transformation of aromatic aldehydes to nitriles, using S, S-dimethylsulfurdiimide as iminating agent. isolation of dithiatetrazocines as reaction intermediates. Tetrahedron Lett 26(33):2739–2742

    Article  CAS  Google Scholar 

  52. Carmeli M, Shefer N, Rozen S (2006) From aldehydes to nitriles, a general and high yielding transformation using HOF·CH3CN complex. Tetrahedron Lett 47(50):8969–8972

    Article  CAS  Google Scholar 

  53. Arote ND, Bhalerao DS, Akamanchi KG (2007) Direct oxidative conversion of aldehydes to nitriles using IBX in aqueous ammonia. Tetrahedron Lett 48(21):3651–3653

    Article  CAS  Google Scholar 

  54. Telvekar VN, Patel KN, Kundaikar HS, Chaudhari HK (2008) A novel system for the synthesis of nitriles from aldehydes using aqueous ammonia and sodium dichloroiodate. Tetrahedron Lett 49(14):2213–2215

    Article  CAS  Google Scholar 

  55. Sridhar M, Reddy MKK, Sairam VV et al (2012) Acetohydroxamic acid: a new reagent for efficient synthesis of nitriles directly from aldehydes using Bi(OTf)3 as the catalyst. Tetrahedron Lett 53(21):3421–3424

    Article  CAS  Google Scholar 

  56. Nandi GC, Laali KK (2013) Schmidt reaction in ionic liquids: highly efficient and selective conversion of aromatic and heteroaromatic aldehydes to nitriles with [BMIM(SO3H)][OTf] as catalyst and [BMIM][PF6] as solvent. Tetrahedron Lett 54(17):2177–2179

    Article  CAS  Google Scholar 

  57. Bose DS, Narsaiah AV (1998) Efficient one pot synthesis of nitriles from aldehydes in solid state using peroxymonosulfate on alumina. Tetrahedron Lett 39(36):2177–2179

    Article  Google Scholar 

  58. Yamazaki S, Yamazaki Y (1990) A catalytic synthesis of nitriles from aldehydes and alcohols in the presence of aqueous ammonia by oxidation of NiSO4–K2S2O8. Chem Lett 19(4):571–574

    Article  Google Scholar 

  59. Dornan LM, Cao Q, Flanagan JCA, Crawford JJ, Cook MJ, Muldoon MJ (2013) Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant. Chem Commun 49(54):6030–6032

    Article  CAS  Google Scholar 

  60. Laulhé S, Gori SS, Nantz MH (2012) A chemoselective, one-pot transformation of aldehydes to nitriles. J Org Chem 77(20):9334–9337

    Article  CAS  Google Scholar 

  61. Veisi H (2010) Direct oxidative conversion of alcohols, amines, aldehydes, and benzyl halides into the corresponding nitriles with trichloroisocyanuric acid in aqueous ammonia. Synthesis 15:2631–2635

    Article  CAS  Google Scholar 

  62. Zhu C, Sun C, Wei Y (2010) Direct oxidative conversion of alcohols, aldehydes and amines into nitriles using hypervalent iodine(III) reagent. Synthesis 24:4235–4241

    Google Scholar 

  63. Arques A, Molina P, Soler A (1980) A new synthesis of nitriles from aldehydes. Synthesis 9:702–704

    Article  Google Scholar 

  64. Capdevielle P, Lavigne A, Maumy M (1989) Simple and efficient copper-catalyzed one-pot conversion of aldehydes into nitriles. Synthesis 6:451–452

    Article  Google Scholar 

  65. Lai G, Bhamare NK, Anderson WK (2001) A one-pot method for the efficient preparation of aromatic nitriles from aldehydes using ammonia, magnesium sulfate, and manganese dioxide. Synlett 2:230–231

    Google Scholar 

  66. Bandgar BP, Makone SS (2003) Organic reactions in water: highly rapid CAN mediated one-pot synthesis of nitriles from aldehydes under mild conditions. Synlett 2:262–264

    Article  Google Scholar 

  67. Yamaguchi K, Fujiwara H, Ogasawara Y, Kotani M, Mizuno N (2007) A tungsten–tin mixed hydroxide as an efficient heterogeneous catalyst for dehydration of aldoximes to nitriles. Angew Chem Int Ed 46(21):3922–3925

    Article  CAS  Google Scholar 

  68. Ishida T, Watanabe H, Takei T, Hamasaki A, Tokunaga M, Harut M (2012) Metal oxide-catalyzed ammoxidation of alcohols to nitriles and promotion effect of gold nanoparticles for one-pot amide synthesis. Appl Catal A 425–426:85–90

    Article  CAS  Google Scholar 

  69. Oishi T, Yamaguchi K, Mizuno N (2009) Catalytic oxidative synthesis of nitriles directly from primary alcohols and ammonia. Angew Chem Int Ed 48(34):6286–6288

    Article  CAS  Google Scholar 

  70. Iida S, Togo H (2007) Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3. Tetrahedron 63(34):8274–8281

    Article  CAS  Google Scholar 

  71. Iida S, Togo H (2007) Oxidative conversion of primary alcohols, and primary, secondary, and tertiary amines into the corresponding nitriles with 1,3-diiodo-5,5-dimethylhydantoin in aqueous NH3. Synlett 3:407–410

    Google Scholar 

  72. Reddy KR, Maheswari CU, Venkateshwar M, Prashanthi S, Kantam ML (2009) Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2–TBHP system. Tetrahedron Lett 50(18):2050–2053

    Article  CAS  Google Scholar 

  73. Rokade BV, Malekar SK, Prabhu KR (2012) A novel oxidative transformation of alcohols to nitriles: an efficient utility of azides as a nitrogen source. Chem Commun 48(44):5506–5508

    Article  CAS  Google Scholar 

  74. Yamaguchi K, Kobayashi H, Wang Y, Oishi T, Ogasawara Y, Mizuno N (2013) Green oxidative synthesis of primary amides from primary alcohols or aldehydes catalyzed by a cryptomelane-type manganese oxide-based octahedral molecular sieve, OMS-2. Catal Sci Technol 3(2):318–327

    Article  CAS  Google Scholar 

  75. Tao C, Liu F, Zhu Y, Liu W, Cao Z (2013) Copper-catalyzed aerobic oxidative synthesis of aryl nitriles from benzylic alcohols and aqueous ammonia. Org Biomol Chem 11(20):3349–3354

    Article  CAS  Google Scholar 

  76. Tan D-W, Xie J-B, Li Q, Li H-X, Li J-C, Li H-Y, Lang J-P (2014) Syntheses and structures of copper complexes of 3-(6-(1H-pyrazol-1-yl)pyridin-2-yl)pyrazol-1-ide and their excellent performance in the syntheses of nitriles and aldehydes. Dalton Trans 43(37):14061–14071

    Article  CAS  Google Scholar 

  77. Xie J-B, Bao J-J, Li H-X, Tan D-W, Li H-Y, Lang J-P (2014) An efficient approach to the ammoxidation of alcohols to nitriles and the aerobic oxidation of alcohols to aldehydes in water using Cu(II)/pypzacac complexes as catalysts. RSC Adv 4(96):54007–54017

    Article  CAS  Google Scholar 

  78. Dighe SU, Chowdhury D, Batra S (2014) Iron nitrate/TEMPO: a superior homogeneous catalyst for oxidation of primary alcohols to nitriles in air. Adv Synth Catal 356(18):3892–3896

    Article  CAS  Google Scholar 

  79. Jagadeesh RV, Junge H, Beller M (2014) Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts. Nat Commun 5:4128

    Article  CAS  Google Scholar 

  80. Yin W, Wang C, Huang Y (2013) Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis. Org Lett 15(8):1850–1853

    Article  CAS  Google Scholar 

  81. Ghorbani-Vaghei R, Veisi H (2009) Poly(N, N′-dichloro-N-ethylbenzene-1,3-disulfonamide) and N,N,N′,N′-tetrachlorobenzene-1,3-disulfonamide as novel reagents for the synthesis of N-chloroamines. Nitriles and Aldehydes. Synthesis 6:945–950

    Article  CAS  Google Scholar 

  82. Shimojo H, Moriyama K, Togo H (2013) Simple one-pot conversion of alcohols into nitriles. Synthesis 45:2155–2164

    Article  CAS  Google Scholar 

  83. Vatèle J-M (2014) One-pot oxidative conversion of alcohols into nitriles by using a TEMPO/PhI(OAc)2/NH4OAc system. Synlett 25:1275–1278

    Article  CAS  Google Scholar 

  84. McAllister GD, Wilfred CD, Taylor RJK (2002) Tandem oxidation processes: the direct conversion of activated alcohols into nitriles. Synlett 8:1291–1292

    Google Scholar 

  85. Chen F-E, Li Y-Y, Xu M, Jia H-Q (2002) Tetrabutylammonium peroxydisulfate in organic synthesis; XIII. A simple and highly efficient one-pot synthesis of nitriles by nickel-catalyzed oxidation of primary alcohols with tetrabutylammonium peroxydisulfate. Synthesis 13:1804–1806

    Article  Google Scholar 

  86. Yadav DKT, Bhanage BM (2013) Copper-catalyzed synthesis of nitriles by aerobic oxidative reaction of alcohols and ammonium formate. Eur J Org Chem 23:5106–5110

    Article  CAS  Google Scholar 

  87. Gu L, Jin C (2015) Copper-catalyzed aerobic oxidative cleavage of C–C bonds in epoxides leading to aryl nitriles and aryl aldehydes. Chem Commun 51:6572–6575

    Article  CAS  Google Scholar 

  88. Ge J-J, Yao C-Z, Wang M-M, Zheng H-X, Kang Y-B, Li Y Transition-metal-free deacylative cleavage of unstrained C(sp 3)–C(sp 2) bonds: cyanide-free access to aryl and aliphatic nitriles from ketones and aldehydes. Org Lett 18(2): 228–231

    Google Scholar 

  89. Xu B, Jiang Q, Zhao A, Jia J, Liu Q, Luo W, Guo C (2015) Copper-catalyzed aerobic conversion of the C=O bond of ketones to a C≡N bond using ammonium salts as the nitrogen source. Chem Commun 51(56):11264–11267

    Article  CAS  Google Scholar 

  90. Kende AS, Liu K (1995) The facile fragmentation of trifluoroacetyl groups to nitriles. Tetrahedron Lett 36(23):4035–4038

    Article  CAS  Google Scholar 

  91. Kamijo S, Hoshikawa T, Inoue M (2010) Regio- and stereoselective acylation of saturated carbocycles via Norrish–Yang photocyclization. Tetrahedron Lett 51(5):872–874

    Article  CAS  Google Scholar 

  92. Arora PK, Sayre LM (1991) Copper-ammonia mediated oxidation of carbonyl compounds. Tetrahedron Lett 32(8):1007–1010

    Article  CAS  Google Scholar 

  93. Zhang X, Li WZ (2006) Acid-promoted ring opening of α-hydroxyl cyclobutanones: a novel and facile one-pot synthesis of nitrile derivatives. Synth Commun 36:249–254

    Article  CAS  Google Scholar 

  94. Feng Q, Song Q (2014) Copper-catalyzed decarboxylative C≡N triple bond formation: direct synthesis of benzonitriles from phenylacetic acids under O2 atmosphere. Adv Synth Catal 356(8):1697–1702

    Article  CAS  Google Scholar 

  95. Carter KN, Hulse JE III (1982) Extensions of the hydrazone and Beckmann rearrangements. J Org Chem 47(11):2208–2210

    Article  CAS  Google Scholar 

  96. Ferris AF (1959) α-Oximino ketones. I. The, “normal” and “abnormal” beckmann rearrangements. J Org Chem 24(4):580–581

    Article  CAS  Google Scholar 

  97. Kaim LE, Meyer C (1996) An unprecedented radical reaction of benzotriazole derivatives. A new efficient method for the generation of iminyl radicals. J Org Chem 61(5):1556–1557

    Article  CAS  Google Scholar 

  98. Denton WI, Bishop RB, Caldwell HP, Chapman HD (1950) Production of aromatic nitriles. Ind Eng Chem 42(5):796–800

    Article  CAS  Google Scholar 

  99. Toland WG (1962) The formation of nitriles by reaction of terminal methyl groups with sulfur and anhydrous ammonia. J Org Chem 27(3):869–871

    Article  CAS  Google Scholar 

  100. Rapolu CSR, Panja KR (1993) Highly selective V–P–O/γ-Al2O3 catalysts in the ammoxidation of toluene to benzonitrile. J Chem Soc Chem Commun 14:1175–1176

    Article  Google Scholar 

  101. Chary KVR, Kumar CP, Murli A, Tripathi A, Clearfield A (2004) Studies on catalytic functionality of V2O5/Nb2O5 catalysts. J Mol Catal Chem 216(1):139–146

    Article  CAS  Google Scholar 

  102. Sanati M, Andersson A (1990) Ammoxtoation of toluene over TiO2(B)-supported vanadium oxide catalysts. J Mol Catal 59(2):233–255

    Article  CAS  Google Scholar 

  103. Cavalli P, Cavani F, Manenti I, Trifirò F (1987) Ammoxidation of toluene to benzonitrile on vanadium-titanium oxides catalysts prepared by precipitation. The role of catalyst composition. Ind Eng Chem Res 26(4):639–647

    Article  CAS  Google Scholar 

  104. Cavani F, Parrinello F, Trifirò F (1987) Synthesis of aromatic nitriles by vapour phase catalytic ammoxidation. J Mol Catal 43(1):117–125

    Article  CAS  Google Scholar 

  105. Zheng Q, Huang C, Xie G, Xu C, Chen Y (1999) A direct synthesis of aromatic nitriles from methylaromatic compounds by ammoxidation on DC-108 catalyst. Synth Commun 29(13):2349–2353

    Article  CAS  Google Scholar 

  106. Kumar CP, Reddy KR, Rao VV, Chary KVR (2002) Vapour phase ammoxidation of toluene over vanadium oxide supported on Nb2O5–TiO2. Green Chem 4(5):513–516

    Article  CAS  Google Scholar 

  107. Belter RK (2011) High temperature vapor phase reactions of nitrogen trifluoride with benzylic substrates. J Fluor Chem 132(5):318–322

    Article  CAS  Google Scholar 

  108. Zhou W, Zhang L, Jiao N (2009) Direct transformation of methyl arenes to aryl nitriles at room temperature. Angew Chem Int Ed 48(38):7094–7097

    Article  CAS  Google Scholar 

  109. Diana GD, Cutcliffe D, Volkots DL, Mallamo JP, Bailey TR, Vescio N, Oglesby RC, Nitz TJ, Wetzel J, Giranda V, Pevear DC, Dutko FJ (1993) Antipicornavirus activity of tetrazole analogs related to disoxaril. J Med Chem 36(22):3240–3250

    Article  CAS  Google Scholar 

  110. Guo S, Wan G, Sun S, Jiang Y, Yu J-T, Cheng J (2015) Iodine-catalyzed ammoxidation of methyl arenes. Chem Commun 51(24):5085–5088

    Article  CAS  Google Scholar 

  111. Sasson R, Rozen S (2005) From azides to nitriles. A novel fast transformation made possible by Br F3. Org Lett 7(11):2177–2179

    Article  CAS  Google Scholar 

  112. He J, Yamaguchi K, Mizuno N (2011) Aerobic oxidative transformation of primary azides to nitriles by ruthenium hydroxide catalyst. J Org Chem 76(11):4606–4610

    Article  CAS  Google Scholar 

  113. Zhou W, Xu J, Zhang L, Jiao N (2010) An efficient transformation from benzyl or allyl halides to aryl and alkenyl nitriles. Org Lett 12(12):2888–2891

    Article  CAS  Google Scholar 

  114. Tsuchiya D, Kawagoe Y, Moriyama K, Togo H (2013) Direct oxidative conversion of methylarenes into aromatic nitriles. Org Lett 15(16):4194–4197

    Article  CAS  Google Scholar 

  115. Kawagoe Y, Moriyama K, Togo H (2014) One-pot transformation of methylarenes into aromatic nitriles with inorganic metal-free reagents. Eur J Org Chem 2014(19):4115–4122

    Article  CAS  Google Scholar 

  116. Okamoto K, Eger BT, Nishuno T, Kondo S, Pai EF, Nishino T (2003) An extremely potent inhibitor of xanthine oxidoreductase. J Biol Chem 278(3):1848–1855

    Article  CAS  Google Scholar 

  117. Wang Y, Yamaguchi K, Mizuno N (2012) Manganese oxide promoted liquid-phase aerobic oxidative amidation of methylarenes to monoamides using ammonia surrogates. Angew Chem Int Ed 51(29):7250–7253

    Article  CAS  Google Scholar 

  118. Shu Z, Ye Y, Deng Y, Zhang Y, Wang J (2013) Palladium(II)-catalyzed direct conversion of methyl arenes into aromatic nitriles. Angew Chem Int Ed 52(40):10573–10576

    Article  CAS  Google Scholar 

  119. Kim HS, Kim SH, Kim JN (2009) Highly efficient Pd-catalyzed synthesis of nitriles from aldoximes. Tetrahedron Lett 50(15):1717–1719

    Article  CAS  Google Scholar 

  120. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC (2010) Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 53(22):7902–7917

    Article  CAS  Google Scholar 

  121. Liu J, Zheng H-X, Yao C-Z, Sun B-F, Kang Y-B (2016) Pharmaceutical-oriented selective synthesis of mononitriles and dinitriles directly from methyl(hetero)arenes: access to chiral nitriles and citalopram. J Am Chem Soc 138(10):3294–3297

    Article  CAS  Google Scholar 

  122. Zong H, Huang H, Liu J, Bian G, Song L (2012) Added-metal-free catalytic nucleophilic addition of grignard reagents to ketones. J Org Chem 77(10):4645–4652

    Article  CAS  Google Scholar 

  123. Chen F, Huang X, Cui Y, Jiao N (2013) Direct transformation of methyl imines to α-iminonitriles under mild and transition-metal-free conditions. Chem Eur J 19(34):11199–11202

    Article  CAS  Google Scholar 

  124. Wu D, Zhang J, Cui J, Zhang W, Liu Y (2014) AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C–H bond and direct conversion of 2-methyl quinoxalines into related nitriles. Chem Commun 50:10857–10860

    Article  CAS  Google Scholar 

  125. Milberger EC, Wong EKT (1983) European Patent Applications, 82620, 29 Jun 1983

    Google Scholar 

  126. Reed SA, Mazzotti AR, White MC (2009) A catalytic, Brønsted base strategy for intermolecular allylic C–H amination. J Am Chem Soc 131(33):11701–11706

    Article  CAS  Google Scholar 

  127. Liu G, Yin G, Wu L (2008) Palladium-catalyzed intermolecular aerobic oxidative amination of terminal alkenes: efficient synthesis of linear allylamine derivatives. Angew Chem Int Ed 47(25):4733–4736

    Article  CAS  Google Scholar 

  128. Shimizu Y, Obora Y, Ishii Y (2010) Intermolecular aerobic oxidative allylic amination of simple alkenes with diarylamines catalyzed by the Pd(OCOCF3)2/NPMoV/O2 system. Org Lett 12(6):1372–1374

    Article  CAS  Google Scholar 

  129. Qin C, Jiao N (2010) Iron-facilitated direct oxidative C–H transformation of allylarenes or alkenes to alkenyl nitriles. J Am Chem Soc 132(45):15893–15895

    Article  CAS  Google Scholar 

  130. Simmons EM, Hartwig JF (2012) On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew Chem Int Ed 51(13):3066–3072

    Article  CAS  Google Scholar 

  131. Zhou W, Xu J, Zhang L, Jiao N (2011) An efficient approach to alkenyl nitriles from allyl esters. Synlett 7:887–890

    Google Scholar 

  132. Grubbs RH, Miller SJ, Fu GC (1995) Ring-closing metathesis and related processes in organic synthesis. Acc Chem Res 28(11):446–452

    Article  CAS  Google Scholar 

  133. Chen YL (1965) Carbon-carbon doubie bond cleavage by photoaddition of N-nitrosodialkylamine to olefins. J Am Chem Soc 87(20):4642–4643

    Article  Google Scholar 

  134. Wang T, Jiao N (2013) TEMPO-catalyzed aerobic oxygenation and nitrogenation of olefins via C=C double-bond cleavage. J Am Chem Soc 135(32):11692–11695

    Article  CAS  Google Scholar 

  135. Yokoyama R, Matsumoto S, Nomura S, Higaki T, Yokoyama T, Kiyooka S (2009) Enantioselective construction of nitrogen-substituted quaternary carbon centers adjacent to the carbonyl group in the cyclohexane ring: first asymmetric synthesis of anesthetic (S)-ketamine with high selectivity. Tetrahedron 65(27):5181–5191

    Article  CAS  Google Scholar 

  136. Sun X, Li X, Song S, Zhu Y, Liang Y-F, Jiao N (2015) Mn-catalyzed highly efficient aerobic oxidative hydroxyazidation of olefins: a direct approach to azido alcohols. J Am Chem Soc 137(18):6059–6066

    Article  CAS  Google Scholar 

  137. Zong X, Zheng Q-Z, Jiao N (2014) NBS mediated nitriles synthesis through C=C double bond cleavage. Org Biomol Chem 12:1198–1202

    Article  CAS  Google Scholar 

  138. Dornan LM, Cao Q, Flanagan JCA, Crawford JJ, Cook MJ, Muldoon MJ (2013) Copper/TEMPO catalysed synthesis of nitriles from aldehydes or alcohols using aqueous ammonia and with air as the oxidant. Chem Commun 49:6030–6032

    Article  CAS  Google Scholar 

  139. Chiba S, Zhang L, Ang GY, Hui BW (2010) Generation of iminyl copper species from α-azido carbonyl compounds and their catalytic C–C bond cleavage under an oxygen atmosphere. Org Lett 12(9):2052–2055

    Article  CAS  Google Scholar 

  140. Xu S, Cai T, Yun Z (2016) Cobalt-containing mesoporous ZSM-5 zeolite catalyzed C=C bond cleavage of alkenes to form nitriles. Synlett 27(2):221–224

    CAS  Google Scholar 

  141. Xu J-H, Jiang Q, Guo C-C (2013) Phenyliodonium diacetate mediated direct synthesis of benzonitriles from styrenes through oxidative cleavage of C=C bonds. J Org Chem 78(23):11881–11886

    Article  CAS  Google Scholar 

  142. Emmanuvel L, Shaikh TMA, Sudalai A (2005) NaIO4/LiBr-mediated diastereoselective dihydroxylation of olefins: a catalytic approach to the Prevost–Woodward reaction. Org Lett 7(22):5071–5074

    Article  CAS  Google Scholar 

  143. Liu Q, Fang B, Bai X, Liu Y, Wu Y, Xu G, Guo C (2016) Direct synthesis of nitriles from cleavage of C=C double bond with nitrite as the nitrogen source and oxidant. Tetrahedron Lett 57(24):2620–2623

    Article  CAS  Google Scholar 

  144. Amblard F, Cho JH, Schinazi RF (2009) Cu(I)-catalyzed Huisgen azide–alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem Rev 109(9):4207–4220

    Article  CAS  Google Scholar 

  145. Haines AH (1985) Methods for the oxidation of organic compounds. Alkanes, alkenes, alkynes, and arenes. Academic Press, New York

    Google Scholar 

  146. Takaya H, Noyori R (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Pergamon, Oxford

    Google Scholar 

  147. Shen T, Wang T, Qin C, Jiao N (2013) Silver-catalyzed nitrogenation of alkynes: a direct approach to nitriles through C≡C bond cleavage. Angew Chem Int Ed 52(26):6677–6680

    Article  CAS  Google Scholar 

  148. Kadaba PK (1990) Triazolines XX. Vinyl azides as dipolarophiles in 1,3-dipolar cycloadditions: intermolecular cycloaddition of hydrazoic acid and α-styryl azide to give a tetrazole. Synlett 6:349–351

    Article  Google Scholar 

  149. Okamoto N, Ishikura M, Yanada R (2013) Cleavage of carbon≡carbon triple bond: direct transformation of alkynes to nitriles. Org Lett 15(11):2571–2573

    Article  CAS  Google Scholar 

  150. Jung N, Bräse S (2012) Vinyl and alkynyl azides: well-known intermediates in the focus of modern synthetic methods. Angew Chem Int Ed 51(49):12169–12171

    Article  CAS  Google Scholar 

  151. Banert K, Fotsing JR, Hagedorn M, Reisenauer HP, Maier G (2008) Photolysis of open-chain 1,2-diazidoalkenes: generation of 2-azido-2H-azirines, formyl cyanide, and formyl isocyanide. Tetrahedron 64(24):5645–5648

    Article  CAS  Google Scholar 

  152. Dutta U, Lupton DW, Maiti D (2016) Aryl nitriles from alkynes using tert-butyl nitrite: metal-free approach to C≡C bond cleavage. Org Lett 18(4):860–863

    Article  CAS  Google Scholar 

  153. Sherwood AG, Gunning HE (1963) Reactions of unsaturated free radicals with nitric oxide. Radical-induced scission of carbon–carbon triple bonds. J Am Chem Soc 85(21):3506–3508

    Article  CAS  Google Scholar 

  154. Huang X, Li X, Jiao N (2015) Copper-catalyzed direct transformation of simple alkynes to alkenyl nitriles via aerobic oxidative nincorporation. Chem Sci 6:6355–6360

    Article  CAS  Google Scholar 

  155. Liang Y, Zhou H, Yu Z-X (2009) Why is copper(I) complex more competent than dirhodium(II) complex in catalytic asymmetric O–H insertion reactions? A computational study of the metal carbenoid O–H insertion into water. J Am Chem Soc 131(49):17783–17785

    Article  CAS  Google Scholar 

  156. Banert K, Arnold R, Hagedorn M, Thoss P, Auer AA (2012) 1-Azido-1-alkynes: synthesis and spectroscopic characterization of azidoacetylene. Angew Chem Int Ed 51(13):7515–7518

    Article  CAS  Google Scholar 

  157. Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T (2011) A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334(6056):639–642

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, T., Jiao, N. (2017). Nitrogenation Strategy for the Synthesis of Nitriles. In: Jiao, N. (eds) Nitrogenation Strategy for the Synthesis of N-containing Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-2813-7_4

Download citation

Publish with us

Policies and ethics