Skip to main content

Nitrogenation Strategy for the Synthesis of Amines

  • Chapter
  • First Online:

Abstract

Amines are important organic compounds with a wide range of application in the synthesis of fine chemicals. Although many multi-step methods have been well developed for their synthesis, one step methods for the synthesis of amine, especially, aliphatic primary amine via direct C–H or C–C bond nitrogention are less developed and full of challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lawrence SA (ed) (2004) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  2. Rappoport Z (ed) (2007) The chemistry of anilines, parts 1 and 2. John Wiley & Sons, New York

    Google Scholar 

  3. Scholz U, Schlummer B (2007) Arylamines. In: Science of synthesis, vol 31b. Georg Thieme Verlag, Stuttgart, pp 1565–1678

    Google Scholar 

  4. Ricci A (ed) (2008) Amino group chemistry: from synthesis to the life sciences. Wiley-VCH, Weinheim

    Google Scholar 

  5. Blaser HU, Siegrist U, Steiner H, Studer M (2001) Aromatic nitro compounds. In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, pp 389–406

    Google Scholar 

  6. Mallat T, Baiker A, Kleist W, Koehler K (2008) Amination reactions. In: Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, p 3548

    Google Scholar 

  7. Bunnett JF, Zahler RE (1951) Aromatic nucleophilic substitution reactions. Chem Rev 49(2):273–412

    Article  CAS  Google Scholar 

  8. Aubin Y, Fischmeister C, Thomas CM, Renaud J-L (2010) Direct amination of aryl halides with ammonia. Chem Soc Rev 39:4130–4145

    Article  CAS  Google Scholar 

  9. Finet J-P, Fedorov AY, Combes S, Boyer G (2002) Recent advances in Ullmann reaction: copper(II) diacetate catalyzed N-, O- and S-arylation involving polycoordinate heteroatomic derivatives. Curr Org Chem 6(7):597–626

    Article  CAS  Google Scholar 

  10. Kunz K, Scholz U, Ganzer D (2003) Renaissance of Ullmann and Goldberg reactions—progress in copper catalyzed C–N-, C–O- and C–S-coupling. Synlett 15:2428–2439

    Article  CAS  Google Scholar 

  11. Ley SV, Thomas AW (2003) Modern synthetic methods for copper-mediated C(aryl)–O, C(aryl)–N, and C(aryl)–S bond formation. Angew Chem Int Ed 42(44):5400–5449

    Article  CAS  Google Scholar 

  12. Monnier F, Taillefer M (2008) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions: copper makes a difference. Angew Chem Int Ed 47(17):3096–30991

    Article  CAS  Google Scholar 

  13. Evano G, Blanchard N, Toumi M (2008) Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem Rev 108(8):3054–3131

    Article  CAS  Google Scholar 

  14. Ma D, Cai Q (2008) Copper/amino acid catalyzed cross-couplings of aryl and vinyl halides with nucleophiles. Acc Chem Res 41(11):1450–1460

    Article  CAS  Google Scholar 

  15. Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew Chem Int Ed 48(38):6954–6971

    Article  CAS  Google Scholar 

  16. Sambiagio C, Marsden SP, Blacker AJ, McGowan PC (2014) Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem Soc Rev 43(10):3525–3550

    Article  CAS  Google Scholar 

  17. Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL (1998) Rational development of practical catalysts for aromatic carbon–nitrogen bond formation. Acc Chem Rev 31(12):805–818

    Article  CAS  Google Scholar 

  18. Hartwig JF (1998) Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed Engl 37:2046–2067

    Article  CAS  Google Scholar 

  19. Schlummer B, Scholz U (2004) Palladium-catalyzed C–N and C–O coupling—a practical guide from an industrial vantage point. Adv Synth Catal 346(13–15):1599–1626

    Article  CAS  Google Scholar 

  20. Hartwig JF (2008) Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc Chem Res 41(11):1534–1544

    Article  CAS  Google Scholar 

  21. Hartwig JF (2008) Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature 455:314–322

    Article  CAS  Google Scholar 

  22. Surry DS, Buchwald SL (2011) Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem Sci 2:27–50

    Article  CAS  Google Scholar 

  23. Chan DMT, Monaco KL, Wang R-P, Winters MP (1998) New N- and O-arylations with phenylboronic acids and cupric acetate. Tetrahedron Lett 39(19):2933–2936

    Article  CAS  Google Scholar 

  24. Evans DA, Katz JL, West TR (1998) Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett 39(19):2937–2940

    Article  CAS  Google Scholar 

  25. Lam PYS, Clark CG, Saubern S, Adams J, Winters MP, Chan DMT (1988) New aryl/heteroaryl C–N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett 39(19):2941–2944

    Article  Google Scholar 

  26. Erdik E, Ay M (1989) Electrophilic amination of carbanions. Chem Rev 89(8):1947–1980

    Article  CAS  Google Scholar 

  27. Coeffard V, Moreau X, Thomassigny C, Greck C (2014) Transition-metal-free amination of aryl boronic acids and their derivatives. Angew Chem Int Ed 52(22):5684–5686

    Article  CAS  Google Scholar 

  28. Ou L, Shao J, Zhang G, Yu Y (2011) Metal-free carbon–nitrogen bond-forming coupling reaction between arylboronic acids and organic azides. Tetrahedron Lett 52(13):1430–1431

    Article  CAS  Google Scholar 

  29. Xiao Q, Tian L, Tan R, Xia Y, Qiu D, Zhang Y, Wang J (2012) Transition-metal-free electrophilic amination of arylboroxines. Org Lett 14(16):4230–4233

    Article  CAS  Google Scholar 

  30. Mlynarski SN, Karns AS, Morken JP (2012) Direct stereospecific amination of alkyl and aryl pinacol boronates. J Am Chem Soc 134(40):16449–16451

    Article  CAS  Google Scholar 

  31. Zhu C, Li G, Ess DH, Falck JR, Kurti L (2012) Elusive metal-free primary amination of arylboronic acids: synthetic studies and mechanism by density functional theory. J Am Chem Soc 134(44):18253–18256

    Article  CAS  Google Scholar 

  32. Voth S, Hollett JW, McCubbin J (2015) Transition-metal-free access to primary anilines from boronic acids and a common +NH2 equivalent. J Org Chem 80(50):2545–2553

    Article  CAS  Google Scholar 

  33. Driver TG (2010) Recent advances in transition metal-catalyzed N-atom transfer reactions of azides. Org Biomol Chem 8(17):3831–3846

    Article  CAS  Google Scholar 

  34. Shin K, Kim H, Chang S (2015) Transition-metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc Chem Res 48(4):1040–1052

    Article  CAS  Google Scholar 

  35. Ugi I, Steinbrueckner C (1961) Isonitrile, IX. α-Addition von immonium-Ionen und carbonsäure-anionen an isonitrile. Chem Ber 94(10):2802–2814

    Article  CAS  Google Scholar 

  36. Abele E, Lukevics E (2000) Recent advances in the synthesis of heterocycles from oximes. Heterocycles 53(10):2285–2336

    Article  CAS  Google Scholar 

  37. Sheldon RA, Bekkum H (eds) (2001) Beckmann rearrangement. Wiley-VCH, New York, pp 185–204

    Google Scholar 

  38. Pohlki F, Doye S (2003) The catalytic hydroamination of alkynes. Chem Soc Rev 32(2):104–114

    Article  CAS  Google Scholar 

  39. Alonso F, Beletskaya IP, Yus M (2004) Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem Rev 104(6):3079–3159

    Article  CAS  Google Scholar 

  40. Seayad J, Tillack A, Hartung CG, Beller M (2002) Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines. Adv Syn Catal 344(8):795–813

    Article  CAS  Google Scholar 

  41. Hong S, Marks TJ (2004) Organolanthanide-catalyzed hydroamination. Acc Chem Res 37(9):673–686

    Article  CAS  Google Scholar 

  42. Beller M, Seayad J, Tillack A, Jiao H (2004) Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes. Recent developments and trends. Angew Chem Int Ed 43(26):3368–3398

    Article  CAS  Google Scholar 

  43. Rene Severin, Doye S (2007) The catalytic hydroamination of alkynes. Chem Soc Rev 36(9):1407–1420

    Article  CAS  Google Scholar 

  44. Li C-J (2010) The development of catalytic nucleophilic additions of terminal alkynes in water. Acc Chem Res 43(4):581–590

    Article  CAS  Google Scholar 

  45. Corma A, Leyva-Perez A, Sabater MJ (2011) Gold-catalyzed carbon-heteroatom bond-formingreactions. Chem Rev 111(3):1657–1712

    Article  CAS  Google Scholar 

  46. Krause N, Winter C (2011) Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem Rev 111(3):1994–2009

    Article  CAS  Google Scholar 

  47. McDonald RI, Liu G, Stahl SS (2011) Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem Rev 111(4):2981–3019

    Article  CAS  Google Scholar 

  48. Zeng X (2013) Recent advances in catalytic sequential reactions involving hydroelement addition to carbon–carbon multiple bonds. Chem Rev 113(8):6864–6900

    Article  CAS  Google Scholar 

  49. Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y (2014) Catalytic diamination of olefins via N–N bond activation. Acc Chem Res 47(12):3665–3678

    Article  CAS  Google Scholar 

  50. Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ (2015) Late transition metal-catalyzed hydroamination and hydroamidation. Chem Rev 115(7):2596–2697

    Article  CAS  Google Scholar 

  51. Pirnot MT, Wang Y-M, Buchwald SL (2016) Copper hydride-catalyzed hydroamination of alkenes and alkynes. Angew Chem Int Ed 55(1):48–57

    Article  CAS  Google Scholar 

  52. Coombs JR, Morken JP (2016) Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew Chem Int Ed 55(8):2636–2649

    Article  CAS  Google Scholar 

  53. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598

    Article  Google Scholar 

  54. Huisgen R, Knorr R, Möbius L, Szeimies G (1965) 1.3-Dipolare cycloadditionen, XXIII. Einige beobachtungen zur addition organischer azide an CC-dreifachbindungen. Chem Ber 98(12):4014–4021

    Article  CAS  Google Scholar 

  55. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    Article  CAS  Google Scholar 

  56. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  57. Dauban P, Dodd RH (2003) Iminoiodanes and C–N bond formation in organic synthesis. Synlett 11:1571–1586

    Article  CAS  Google Scholar 

  58. Collet F, Dodd R, Dauban P (2009) Catalytic C–H amination: recent progress and future directions. Chem Commun 34:5061–5074

    Article  CAS  Google Scholar 

  59. Roizen JL, Harvey ME, Du Bois J (2012) Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc Chem Res 45(6):911–922

    Article  CAS  Google Scholar 

  60. Davies HML, Manning JR (2008) Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451:417–424

    Article  CAS  Google Scholar 

  61. Cho SH, Kim JY, Kwak J, Chang S (2011) Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem Soc Rev 40(10):5068–5083

    Article  CAS  Google Scholar 

  62. Song G, Wang F, Li X (2012) C–C, C–O and C–N bond formation via rhodium(III)-catalyzed oxidative C–H activation. Chem Soc Rev 41(9):3651–3678

    Article  CAS  Google Scholar 

  63. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263

    Article  CAS  Google Scholar 

  64. Wibaut JP (1917) For the formation of aniline from ammonia and benzene at high temperatures and in the presence of contact substances. Berichte 50:541–546

    CAS  Google Scholar 

  65. Thomas CI (1985) Preparation of aromatic amines. Canadian Patent 553,988, 4 Mar 1958

    Google Scholar 

  66. Schmerling L (1960) Preparation of aromatic amines. US Patent 2,948,755, 9 Aug 1960

    Google Scholar 

  67. Squire EN (1975) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia. US Patent 3,919,155, 11 Nov 1975

    Google Scholar 

  68. Del Pesco TW (1977) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia. US Patent 4,031,106, 21 Jun 1977

    Google Scholar 

  69. Becker J, Hölderich WF (1998) Amination of benzene in the presence of ammonia using a group VIII metal supported on a carrier as a catalyst. Catal Lett 54:124–128

    Article  Google Scholar 

  70. Durante VA (1999) Oxidative ammonation of benzene to aniline using molecular oxygen as the terminal oxidant. US Patent 5,861,536, 19 Jan 1999

    Google Scholar 

  71. Hagemeyer A, Borade R, Desrosiers P, Guana S, Lowe DM, Poojary DM, Turner H, Weinberg H, Zhou X, Armbrust R, Fengler G, Notheis U (2002) Application of combinatorial catalysis for the direct amination of benzene to aniline. Appl Catal A Gen 227:43–61

    Article  CAS  Google Scholar 

  72. Hu C, Zhu L, Xia Y (2007) Direct amination of benzene to aniline by aqueous ammonia and hydrogen peroxide over V-Ni/Al2O3 catalyst with catalytic distillation. Ind Eng Chem Res 46:3443–3445

    Article  CAS  Google Scholar 

  73. Guo B, Zhang Q, Li G, Yao J, Hu C (2012) Aromatic C–N bond formation via simultaneous activation of C–H and N–H bonds: direct oxyamination of benzene to aniline. Green Chem 14:1880–1883

    Article  CAS  Google Scholar 

  74. Acharyya SS, Ghosh S, Bal R (2014) Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C–H and N–H bonds. Chem Commun 50:13311–13314

    Article  CAS  Google Scholar 

  75. Yu T, Yang R, Xia S, Li G, Hu C (2014) Direct amination of benzene to aniline with H2O2 and NH3·H2O over Cu/SiO2 catalyst. Catal Sci Technol 4:3159–3167

    Article  CAS  Google Scholar 

  76. Yuzawa H, Yoshida H (2010) Direct aromatic-ring amination by aqueous ammonia with a platinum loaded titanium oxide photocatalyst. Chem Commun 46:8854–8856

    Article  CAS  Google Scholar 

  77. Romero NA, Margrey KA, Tay NE, Nicewicz DA (2015) Site-selective arene C–H amination via photoredox catalysis. Science 349(6254):1326–1330

    Article  CAS  Google Scholar 

  78. Zheng Y-W, Chen B, Ye P, Feng K, Wang W, Meng Q-Y, Wu L-Z, Tung C-H (2016) Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J Am Chem Soc. doi:10.1021/jacs.6b05498

    Google Scholar 

  79. Graebe C (1901) A direct mode of formation of aromatic amines from the hydrocarbons. Berichte 34(2):1778–1781

    CAS  Google Scholar 

  80. Jaubert GF (1901) A new synthetic method of aniline. Comptes Rend 132:841–842

    CAS  Google Scholar 

  81. Keller RN, Smith PAS (1944) Direct aromatic amination: a new reaction of hydroxylamine-O-sulfonic acid. J Am Chem Soc 66(7):1122–1124

    Article  CAS  Google Scholar 

  82. Kovacic P, Bennett RP (1961) Aromatic amination with hydroxylamine-O-sulfonic acid. J Am Chem Soc 83(1):221–224

    Article  CAS  Google Scholar 

  83. Kovacic P, Bennett RP, Foote JL (1962) Aromatic amination with hydroxylammonium salts. Reactivity and directive effects. J Am Chem Soc 84(5):759–763

    Article  CAS  Google Scholar 

  84. Mantegazza MA, Leofanti G, Petrini G, Padovan M, Zeccina A, Bordiga S (1994) Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts. In: Corberan VC, Bellon SV (eds) New developments in selective oxidation II. Elsevier, New York, pp 541–550

    Google Scholar 

  85. Bittner S, Lempert D (1994) Reaction of hydroxylamines with 1,4-quinones: a new direct synthesis of aminoquinones. Synthesis 9:917–919

    Article  Google Scholar 

  86. Kuznetsova NI, Kuznetsova LI, Detusheva LG, Likholobov VA, Pez GP, Cheng H (2000) Amination of benzene and toluene with hydroxylamine in the presence of tranistion metal redox catalysts. J Mol Catal A Chem 161:1–9

    Article  CAS  Google Scholar 

  87. Yu T, Hu C, Wang X (2005) Direct amination of toluene with hydroxylamine in the presence of vanadium-based catalysts. Chem Lett 34(3):406–407

    Article  CAS  Google Scholar 

  88. Zhu LF, Guo B, Tang DY, Hu XK, Li GY, Hu CW (2007) Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine. J Catal 245:446–455

    Article  CAS  Google Scholar 

  89. Lu YF, Zhu LF, Liu QY, Guo B, Hu XK, Hu CW (2009) Direct amination of benzene to aniline with several typical vanadium complexes. Chin Chem Lett 20:238–240

    Article  CAS  Google Scholar 

  90. Parida KM, Dash SS, Singha S (2008) Structural properties and catalytic activity of Mn-MCM-41 mesoporous molecular sieves for single-step amination of benzene to aniline. Appl Catal A Gen 351:59–67

    Article  CAS  Google Scholar 

  91. Singha S, Parida KM (2011) A reusable Mn(II)-dampy-MCM-41 system for single step amination of benzene to aniline using hydroxylamine. Catal Sci Technol 1:1496–1505

    Article  CAS  Google Scholar 

  92. Parida KM, Rath D, Dash SS (2010) Synthesis, characterization and catalytic activity of copper incorporated and immobilized mesoporous MCM-41 in the single step amination of benzene. J Mol Catal A Chem 318:85–93

    Article  CAS  Google Scholar 

  93. Gao L, Zhang D, Wang Y, Xue W, Zhao X (2011) Direct amination of toluene to toluidine with hydroxylamine over CuO–V2O5/Al2O3 catalysts. React Kinet Mech Catal 102:377–391

    Article  CAS  Google Scholar 

  94. Grohmann C, Wang H, Glorius F (2013) Rh[III]-catalyzed C–H amidation using aroyloxycarbamates to give N-Boc protected arylamines. Org Lett 15(12):3014–3017

    Article  CAS  Google Scholar 

  95. Tezuka N, Shimojo K, Hirano K, Komagawa S, Yoshida K, Wang C, Miyamoto K, Saito T, Takita R, Uchiyama M (2016) J Am Chem Soc 138(29):9166–9171

    Article  CAS  Google Scholar 

  96. Schmidt KF (1924) About the imine residue. Chem Ber 57(4):704–706

    Article  Google Scholar 

  97. Kovacic P, Russell RL, Bennett RP (1964) Aromatic amination with hydrazoic acid catalyzed by lewis acids. Orientation, acitivity, and relative rate. J Am Chem Soc 86(8):1588–1592

    Article  CAS  Google Scholar 

  98. Mertens A, Lammertama K, Arvanaghi M, Olah GA (1983) Onium ions. 26. Aminodiazonium ions: preparation, 1H, 13C, and 15N NMR structural studies, and electrophilic amination of aromtics. J Am Chem Soc 105:5657–5660

    Article  Google Scholar 

  99. Takeuchi H, Adachi T, Nishiguchi H (1991) Efficient direct aromatic amination by hydrazoic acid in the presence of both trifluoromethanesulphonic acid and trifluoroacetic acid. J Chem Soc Chem Commun 1524–1525

    Google Scholar 

  100. Olah GA, Ernst TD (1989) Trimethylsilyl azide/triflic acid, a highly efficient electrophilic aromatic amination reagent. J Org Chem 54(4):1203–1204

    Article  CAS  Google Scholar 

  101. Takeuchi H, Adachi T, Nishiguchi H, Itou K, Koyama K (1993) Direct aromatic amination by azides: reactions of hydrazoic acid and butyl azides with aromatic compounds in the presence of both trifluoromethanesulfonic acid and trifluoroacetic acid. J Chem Soc Perkin Trans 1:867–870

    Article  Google Scholar 

  102. Borodkin GI, Elanov IR, Shubin VG (2009) Electrophilic amination of methylbenzenes with sodium azide in trifluoromethanesulfonic acid. Russ J Org Chem 45(6):934–935

    Article  CAS  Google Scholar 

  103. Surya Prakash GK, Gurung L, Marinez ER, Mathew T, Olah GA (2016) Electrophilic amination of aromatics with sodium azide in BF3–H2O. Tetrahedron Lett 57(3):288–291

    Article  CAS  Google Scholar 

  104. Peng J, Chen M, Xie Z, Luo S, Zhu Q (2014) Copper-mediated C(sp2)–H amination using TMSN3 as a nitrogen source: redox-neutral access to primary anilines. Org Chem Front 1:777–781

    Article  CAS  Google Scholar 

  105. Takeuchi H (1987) Direct amination of aromatic compounds by nitrenium and alkylnitrenium ions. photolysis of 1-(amino and alkylamino)-2-methyl-4,6-diphenylpyridinium tetrafluoroborates in aromatic solvent-trifluoroacetic acid. J Chem Soc Chem Commun 13:961–963

    Article  Google Scholar 

  106. Takeuchi H, Higuchi D, Adachi T (1991) Efficient direct aromatic amination by parent nitrenium ion. Photolyses of 1-aminopyridinium and 1-aminoquinolinium salts and effect of crown ethers. J Chem Soc Perkin Trans 1:1525–1529

    Article  Google Scholar 

  107. Takeuchi H, Hayakawa S, Tanahashi T, Kobayashi A, Adachi T, Higuchi D (1991) Novel generation of parent, alkyl, dialkyl and alicyclic nitrenium ions in photolyses of pyridinium, quinolinium, bipyridinium and phenanthrolinium salts and aromatic N-substitution by nitrenium ions. J Chem Soc Perkin Trans 2:847–855

    Article  Google Scholar 

  108. Morofuji T, Shimizu A, Yoshida J (2013) Electrochemical C–H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. J Am Chem Soc 135(13):5000–5003

    Article  CAS  Google Scholar 

  109. Sasaki T, Eguchi S, Katada T, Hiroaki O (1977) Synthesis of adamantane derivatives, 37’. A convenient and efficient synthesis of 1-azidoadamantane and related bridgehead azides, and some of their reactions. J Org Chem 42(23):3741–3743

    Article  CAS  Google Scholar 

  110. Margosian D, Sparks D, Kovacic P (1981) Rearrangement of 1-azidoadamantane to 3-aryl-4-azahomoadamantane in the presence of aluminium chloride and aromatic substrates. J Chem Soc Chem Commun 275–276

    Google Scholar 

  111. Margosian D, Speier J, Kovacic P (1981) Formation of (1-adamantylcarbiny1)arenes from 3-azidohomoadamantane-aluminum chloride-aromatic substrates. J Org Chem 46(7):1346–1350

    Article  CAS  Google Scholar 

  112. Jat JL, Paudyal MP, Gao H, Xu Q-L, Yousufuddin M, Devarajan D, Ess DH, Kürti L, Falck JR (2013) Direct stereospecific synthesis of unprotected N–H and N–Me aziridines from olefins. Science 343(6166):61–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, W., Jiao, N. (2017). Nitrogenation Strategy for the Synthesis of Amines. In: Jiao, N. (eds) Nitrogenation Strategy for the Synthesis of N-containing Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-2813-7_2

Download citation

Publish with us

Policies and ethics