Skip to main content

Structures and Properties of Carbon Nanomaterials

  • Chapter
  • First Online:
Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Carbon-based materials ranging from activated carbons, carbon nanotubes (CNTs) to graphene have attracted tremendous attention because of their diversified nanostructures, excellent physical and chemical properties. These properties include variety of forms (powders, fibers, aerogels, composites, sheets, monoliths, tubes, etc.), relatively inert electrochemistry, ease of processability, and controllable porosity. Graphene and CNTs, both comprised of sp2 hybridized carbon atoms, possess unique electrical, mechanical, thermal, catalytic, and electrochemical properties, which have dominated the entire field of material sciences. Graphene, with a two-dimensional layered structure, is the thinnest known material in the universe to date. When infinite graphene crystals become finite and boundaries appear, forming non-three coordinated atoms at the edges, one-dimensional graphene nanoribbons (GNRs) are born and exhibit different properties from that of graphene. GNRs can open a band gap in graphene due to the electron confinement and the presence of edge states, making them attractive as building blocks for basic electronic devices such as transparent electrodes, field effect transistors, and nanoelectromechanical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  4. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  6. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514

    Article  Google Scholar 

  7. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97

    Article  Google Scholar 

  8. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  Google Scholar 

  9. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  10. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  11. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  12. Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  13. Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA, Hewaparakrama K, Kim SM, Zakharov D, Stach EA, Sumanasekera GU (2009) Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–120

    Article  Google Scholar 

  14. Ding L, Tselev A, Wang J, Yuan D, Chu H, McNicholas TP, Li Y, Liu J (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9:800–805

    Article  Google Scholar 

  15. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23:629–633

    Article  Google Scholar 

  16. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  Google Scholar 

  17. Wang XS, Li QQ, Xie J, Jin Z, Wang JY, Li Y, Jiang K, Fan SS (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9:3137–3141

    Article  Google Scholar 

  18. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  19. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  Google Scholar 

  20. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  21. Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  Google Scholar 

  22. Chang HX, Wu HK (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6:3483–3507

    Article  Google Scholar 

  23. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  24. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  25. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

  26. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett G, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  27. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: Synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  Google Scholar 

  28. Novoselov KS, Fal Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  29. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovernI T, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568

    Article  Google Scholar 

  30. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  Google Scholar 

  31. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  Google Scholar 

  32. Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  Google Scholar 

  33. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  34. Bae S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim Y, Kim KS, Ozyilmaz B, Ahn J, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  Google Scholar 

  35. Themlin JM, Debever JM, Forbeaux I (1998) Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B 58:16396–16406

    Article  Google Scholar 

  36. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951–954

    Article  Google Scholar 

  37. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Article  Google Scholar 

  38. Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syvajarvi M, Yakimova R, Kazakova O, JanssenT JBM, Fal’Ko V, Kubatkin S (2010) Towards a quantum resistance standard based on epitaxial graphene. Nat Nanotechnol 5:186–189

    Article  Google Scholar 

  39. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Mullen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  Google Scholar 

  40. Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188

    Article  Google Scholar 

  41. Hackley J, Ali D, DiPasquale J, Demaree JD, Richardson CJK (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114

    Article  Google Scholar 

  42. Dhar S, Barman AR, Ni GX, Wang X, Xu XF, Zheng Y, Tripathy S, Ariando Rusydi A, Loh KP, Rubhausen M, Castro Neto AH, Ozyilmaz B, Venkatesan T (2011) A new route to graphene layers by selective laser ablation. AIP Adv 1:0221092

    Article  Google Scholar 

  43. Tang Q, Zhou Z, Chen Z (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5:4541–4583

    Article  Google Scholar 

  44. James DK, Tour JM (2012) The chemical synthesis of graphene nanoribbons-a tutorial review. Macromol Chem Phys 213:1033–1050

    Article  Google Scholar 

  45. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Muñoz-Sandoval E, Cano-Márquez AG, Charlier J (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  Google Scholar 

  46. Fujita M, Dresselhaus G, Dresselhaus MS, Nakada K (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961

    Article  Google Scholar 

  47. Park C, Son Y, Cohen ML, Louie SG, Yang L (2007) Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett 99:186801

    Article  Google Scholar 

  48. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754

    Article  Google Scholar 

  49. Pennington G, Mehl MJ, Finkenstadt D (2007) From graphene to graphite: A general tight-binding approach for nanoribbon carrier transport. Phys Rev B 76:121405

    Article  Google Scholar 

  50. Lam K, Liang G (2008) An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges. Appl Phys Lett 92:223106

    Article  Google Scholar 

  51. Min H, MacDonald AH, Banerjee SK, Sahu B (2008) Energy gaps, magnetism, and electric-field effects in bilayer graphene nanoribbons. Phys Rev B 78:045404

    Article  Google Scholar 

  52. Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mater Sci Eng, R 70:341–353

    Article  Google Scholar 

  53. Bai J, Duan X, Huang Y (2009) Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett 9:2083–2087

    Article  Google Scholar 

  54. Cano-Márquez AG, Rodríguez-Macías FJ, Campos-Delgado J, Espinosa-González CG, Tristán-López F, Ramírez-González D, Cullen DA, Smith DJ, Terrones M, Vega-Cantú YI (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533

    Article  Google Scholar 

  55. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  Google Scholar 

  56. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  Google Scholar 

  57. Terrones M (2009) Materials science: nanotubes unzipped. Nature 458:845–846

    Article  Google Scholar 

  58. Elías AL, Botello-Méndez AR, Meneses-Rodríguez D, Jehová González V, Ramírez-González D, Ci L, Muñoz-Sandoval E, Ajayan PM, Terrones H, Terrones M (2010) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10:366–372

    Article  Google Scholar 

  59. Kim K, Sussman A, Zettl A (2010) Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano 4:1362–1366

    Article  Google Scholar 

  60. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4:2059–2069

    Article  Google Scholar 

  61. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol 5:321–325

    Article  Google Scholar 

  62. Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus MS, Terrones M (2008) Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett 8:2773–2778

    Article  Google Scholar 

  63. Chen L, Hernandez Y, Feng X, Müllen K (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed 51:7640–7654

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Fan or Tianxi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Fan, W., Zhang, L., Liu, T. (2017). Structures and Properties of Carbon Nanomaterials. In: Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications. SpringerBriefs in Molecular Science(). Springer, Singapore. https://doi.org/10.1007/978-981-10-2803-8_1

Download citation

Publish with us

Policies and ethics