Skip to main content

Arsenic Speciation in Sediments and Representative Biota of Sundarban Wetland

  • Chapter
  • First Online:
Trace Metals in a Tropical Mangrove Wetland
  • 443 Accesses

Abstract

The case study highlights the concentration of total arsenic and individual arsenic species in four soft-bottom benthic marine polychaetous annelids of diverse feeding guilds from the intertidal regions of Indian Sundarban wetland. An additional six sites were also considered exclusively for surface sediments as this would provide important information regarding cycling of arsenic in this estuarine system. Polychaetes (Perinereis cultrifera, Ganganereis sootai, Lumbrinereis notocirrata, and Dendronereis arborifera) and the host sediments were collected adopting a standard protocol and subsequently measured for their TAs arsenic content using inductively coupled plasma mass spectrometry (ICP-MS). Concentration of arsenic (As) in polychaete body tissues exhibited wide range of variations, suggesting species-specific characteristics and inherent peculiarities in arsenic metabolism. Arsenic was generally present in polychaetes as arsenate (As V, ranges from 0.16 to 0.50 mg kg−1) or arsenite (As III) (from 0.10 to 0.41 mg kg−1) (30–53% as inorganic As) and dimethylarsinic acid (DMAV < 1–25%). Arsenobetaine (AB < 16%) and PO4-arsenoriboside (8–48%) were also detected as minor constituents, while monomethylarsonic acid (MAV) was not detected in the polychaetes. The maximum TAs (14.7 mg kg−1 dry wt) was recorded in the polychaete D. arborifera inhabited in the vicinity of a sewage outfall in which the majority of As was present as an uncharacterized compound (10.3 mg kg−1 dry wt) eluted prior to AB. For host sediments, total As ranged from 2.5 to 10.4 mg kg−1. The results support the importance of speciation analysis of arsenic, because of the ubiquitous occurrence of this metalloid in the environment, and its variable toxicity depending on the chemical form, present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apostoli P (1999) The role of element speciation in environmental and occupational medicine. Fresenius J Anal Chem 363:499–504

    Article  CAS  Google Scholar 

  • Bhattacharya A, Sarkar SK (2003) Impact of over exploitation of shellfish: Northeastern coast of India. Ambio 32(1):70–75

    Article  Google Scholar 

  • Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert R (eds) (2007) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation. Elsevier, Amsterdam

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part I: occurrence, toxicity, speciation mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Boyle EA, Edmond JM, Sholkovitz ER (1977) Mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41(9):1313–1324

    Article  CAS  Google Scholar 

  • Button M, Jenkins GT, Harrington CF, Watts MJ (2009) Biotransformation of as in earthworms from a contaminated mine site. J Environ Monit 11:1484–1491

    Article  CAS  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Org Geochem 20:563–577

    Article  CAS  Google Scholar 

  • Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modeling approach. Aquat Toxicol 98:34–43

    Article  CAS  Google Scholar 

  • Casado-Martinez MC, Duncan EG, Smith BD, Maher WA, Rainbow PS (2012) Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Toxicology 21:576–590

    CAS  Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK et al (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chatterjee M, Massolo S, Sarkar SK, Bhattacharya AK, Bhattacharya BD, Satpathy KK et al (2009) An assessment of trace element contamination in intertidal sediment cores of Sundarban mangrove wetland, India for evaluating sediment quality guidelines. Environ Monit Assess 150:307–322

    Article  CAS  Google Scholar 

  • Depledge MH, Rainbow PS (1990) Models of regulation and accumulation of trace metals in marine invertebrates. Comp Biochem Physiol, C Comp Pharmacol Toxicol 97:1–7

    Article  Google Scholar 

  • Dom’ınguez C, Sarkar SK, Bhattacharya A, Chatterjee M, Bhattacharya BD, Jover E et al (2010) Quantification and source identification of polycyclic aromatic hydro- carbons in core sediments from Sundarban Mangrove Wetland, India. Arch Environ Contam Toxicol 59:49–61

    Article  Google Scholar 

  • Edmonds JS, Francesconi KA (1987) Transformations of arsenic in the marine environment. Experientia 43:553–557

    Article  CAS  Google Scholar 

  • Ellwood MJ, Maher WA (2003) Measurement of arsenic species in marine sediments by high performance liquid chromatography inductively coupled plasma mass spectrometry. Anal Chim Acta 477:279–291

    Article  CAS  Google Scholar 

  • Fang T, Chen Y (2015) Arsenic speciation and diffusion flux in Danshuei Estuary sediments, Northern Taiwan. Mar Pollut Bull 101(1):98–109

    Article  CAS  Google Scholar 

  • Fattorini D, Alonso-Hernandez CM, Diaz-Asencio M, Munoz-Caravaca A, Panacciulli FG, Tangherlini M et al (2004) Chemical speciation of arsenic in different marine organisms: importance in monitoring study. Mar Environ Res 58:845–850

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Di Mento R, Cicero AM, Gabellini M, Russo A et al (2008) Seasonal, spatial and inter-annual variations of trace metals in mussels from the Adriatic Sea: a regional gradient for arsenic and implications for monitoring the impact of offshore activities. Chemosphere 72:1524–1533

    Article  CAS  Google Scholar 

  • Fattorini D, Sarkar SK, Regoli F, Bhattacharya BD, Rakshit D, Satpathy KK, Chatterjee M (2013) Levels and chemical speciation of arsenic in representative biota and sediments of a tropical mangrove wetland, India. Environ Sci Processes Impacts 15:773

    Article  CAS  Google Scholar 

  • Francesconi KA, Edmonds JS (1997) Arsenic and marine organisms. Adv Inorg Chem 44:147–189

    Article  CAS  Google Scholar 

  • Francesconi KA, Goessler W, Panutrakul S, Irgolic KJ (1998) A novel arsenic containing riboside arsenosugar in three species of gastropod. Sci Total Environ-Ment 221:139–148

    Article  CAS  Google Scholar 

  • Gallardo MV, Bohari Y, Astruc A, Potin-Gautier M, Astruc M (2001) Speciation analysis of arsenic in environmental solids reference materials by high performance liquid chromatography hydride generation atomic fluorescence spectrometry following orthophosphoric acid extraction. Anal Chim Acta 441:257–268

    Article  CAS  Google Scholar 

  • Garcia-Manyes S, Jiminez G, Padro A, Rubio R, Rauret G (2002) Arsenic speciation in contaminated soils. Talanta 58:97–109

    Article  CAS  Google Scholar 

  • Gebel TW (2001) Genotoxicity of arsenical compounds. Int J Hyg Environ Health 203:249–262

    Article  CAS  Google Scholar 

  • Geiszinger AE, Goessler W, Francesconi KA (2002) The marine polychaete Arenicola marina: its unusual arsenic compound pattern and its uptake of arsenate from seawater. Mar Environ Res 53:37–50

    Article  CAS  Google Scholar 

  • Gibbs PE, Langston WJ, Burt GR, Pascoe PL (1983) Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J Mar Biol Assoc UK 63:313–325

    Article  CAS  Google Scholar 

  • Gomez-Ariza JL, Sanchez-Rodas D, Giraldez I, Morales E (2000) Comparison of biota sample pretreatments for arsenic speciation with coupled HPLC-HG-ICP-MS. Analyst 125:401–407

    Article  CAS  Google Scholar 

  • Gonul LT (2015) Chemical speciation and ecological risk assessment of arsenic in marine sediments from Izmir Bay (Eastern Aegean Sea). Environ Sci Pollut Res Int 24:19951–19960. doi:10.1007/s11356-015-5197-9

    Article  Google Scholar 

  • Hanaoka K, Koga H, Tagawa S, Kaise T (1992a) Degradation of arsenobetaine to inorganic arsenic by the microorganisms occurring in the suspended substances. Comp Biochem Physiol 101B:595–599

    CAS  Google Scholar 

  • Hanaoka K, Koga H, Tagawa S, Kaise T (1992b) The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia 235/236(Dev. Hydrobiol. 75):623–628

    Article  Google Scholar 

  • Hanaoka K, Tagawa S, Kaise T (1996) The fate of organoarsenic compounds in marine ecosystems. Appl Organomet Chem 6:139–146

    Article  Google Scholar 

  • Hettiarachchi SR, Maher WA, Krikowa F, Ubrihien R (2016) Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia. Environ Geochem Health 39:209–219

    Article  Google Scholar 

  • Hutchings PA (1984) A preliminary report on the spatial and temporal patterns of polychaete recruitment on the Great Barrier Reef. In: Hutchings PA (ed) Proceedings of 1st international polychaete conference Sydney. Limnological Society, NSW, pp 227–237

    Google Scholar 

  • Islama SMN, Rahmana SH, Chowdhury DA, Rahmana MM, Tareq SM (2012) Seasonal variations of arsenic in the Ganges and Brahmaputra River, Bangladesh. J Sci Res 4(1):65–75

    Google Scholar 

  • Javed MB, Kachanoski G, Siddique T (2014) Arsenic fractionation and mineralogical characterization of sediments in the Cold Lake area of Alberta, Canada. Sci Total Environ 500–501:181–190

    Article  Google Scholar 

  • Kot A, Namiesnik J (2000) The role of speciation in analytical chemistry. Trends Anal Chem 19:69–79

    Article  CAS  Google Scholar 

  • Kuehl SA, Hariu TM, Moore WS (1989) Shelf sedimentation off the Ganges–Brahmaputra river system: evidence for sediment bypassing to the Bengal fan. J Geol 17:1132–1135

    Article  CAS  Google Scholar 

  • Kumaresan M, Riyazuddin P (2001) Overview of speciation chemistry of arsenic. Curr Sci 80:837–846

    CAS  Google Scholar 

  • Lee JS, Lee BG (2005) Effects of salinity, temperature and food type on the uptake and elimination rates of Cd, Cr and Zn in the Asiatic Clam Corbicula fluminea. Ocean Sci J 40:79–89

    Article  CAS  Google Scholar 

  • Luoma SN, Cloern JE (1982) The impacts of waste- water discharge on biological communities in San Francisco Bay. In: Kockelman HJ, Conomos TJ, Leviton AE (eds) San Francisco Bay, use and protection. Pacific Division, AAAS, San Francisco, pp 137–160

    Google Scholar 

  • Madsen AD, Goessler W, Pedersen SN, Francesconi KA (2000) Characterisation of an algal extract by HPLC- ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J Anal At Spectrom 15:657–662

    Article  CAS  Google Scholar 

  • Maher WA, Foster SD, Taylor AM, Krikowa F, Duncan EG, Chariton AA (2011) Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales. Environ Chem 8:9–18

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hure C, Géret F, Galgani F, Battaglia-Brunet F, Marmier N, Roméo M (2013) Arsenic in marine sediments from French Mediterranean ports: geochemical partitioning, bioavailability and ecotoxicology. Chemosphere 90:2730–2736

    Article  CAS  Google Scholar 

  • Meador JP, Ernest DW, Kagley A (2004) Bioaccumulation of arsenic in marine fish and invertebrates from Alaska and California. Arch Environ Con Tamination and Toxicol 47:223–233

    CAS  Google Scholar 

  • Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters. Applied monitoring and impact assessment. Springer, New York

    Book  Google Scholar 

  • Neff JM (1997) Ecotoxicology of arsenic in the marine environment: a review. Environ Toxicol Chem 16:917–927

    CAS  Google Scholar 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26:1186–1191

    Article  CAS  Google Scholar 

  • O’Reilly J, Watts MJ, Shaw RA, Marcilla AL, Ward NI (2010) Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. Environ Geo Chem Health 32:491–515

    Article  Google Scholar 

  • Phillips DJH (1990) Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat Toxicol 16:151–186

    Article  CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  • Rattanachongkiat S, Millward GE, Foulkes ME (2004) Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). J Environ Monit 6:254–261

    Article  CAS  Google Scholar 

  • Reimer KJ, Thompson AJ (1988) Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals. Biogeochemistry 6:211–237

    Article  CAS  Google Scholar 

  • Sarkar SK, Franciscovic-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environ Int 30:1089–1098

    Article  Google Scholar 

  • Shiomi K, Shiagawa A, Azuma A, Yamanaka H, Kikuchi T (1983) Purification of water-soluble arsenic compounds in a flatfish Limanda herzensteini, sea squirt Halocynthia roretzi, and sea cucumber Stichopus japanicus. Comp Biochem Physiol 74:393–396

    Google Scholar 

  • Shumilin E, Meyer-Willerer A, Marmolejo-Rodriguez AJ, Morton-Bermea O, Galicia-Perez MA, Hernandez E et al (2005) Iron, cadmium, chromium, copper, cobalt, lead, and zinc distribution in the suspended particulate matter of the tropical Marabasco River and its estuary, Colima, Mexico. Bull Environ Contam Toxicol 74:518–525

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh DG (2002) Arsenic in ground water and the environment. Chapter 11, British Geological Survey, pp 263–299

    Google Scholar 

  • Swaine DJ (2000) Why trace elements are important. Fuel Process Technol 65–66:21–33

    Article  Google Scholar 

  • USEPA 1998 Method 3015A, Microwave assisted acid digestion of aqueous samples and extracts. In: USEPA Methods, pp 3015A/1–18

    Google Scholar 

  • Villa-lojo MC, Beceiro-GonzÁlez E, Alonso-Rodríguez E, Prada-Rodríguez D (2006) Arsenic speciation in marine sediments: effects of redox potential and reducing conditions. 377–389. http://dx.doi.org/10.1080/03067319708030502

  • Waldichuk M (1985) Biological availability of metals to marine organisms. Mar Pollut Bull 16:7–11

    Article  Google Scholar 

  • Wang WX, Fisher NS (1999) Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18:2023–2045

    Article  Google Scholar 

  • Wang W-X, Qiu J-W, Qian P-Y (1999) Significance of trophic transfer in predicting the high concentration of zinc in barnacles. Environ Sci Technol 33:2906–2909

    Google Scholar 

  • Waring JS, Maher W (2005) Arsenic bioaccumulation and species in marine Polychaeta. Appl Organomet Chem 19:917–929

    Article  CAS  Google Scholar 

  • Waring J, Maher W, Foster S, Krilkowa F (2005) Occurrence and speciation of arsenic in common Australian coastal polychaetes species. Environ Chem 2:108–118

    Article  CAS  Google Scholar 

  • Watts MJ, Button M, Brewer T, Harrington CF (2008) Quantitative arsenic speciation in two species of earthworms from a former mine site. J Environ Monit 10:753–759

    Article  CAS  Google Scholar 

  • Whalley C, Rowlatt S, Bennett M, Lovell D (1999) Total arsenic in sediments from the Western North Sea and the Humber Estuary. Mar Pollut Bull 38(5):394–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarkar, S.K. (2018). Arsenic Speciation in Sediments and Representative Biota of Sundarban Wetland. In: Trace Metals in a Tropical Mangrove Wetland . Springer, Singapore. https://doi.org/10.1007/978-981-10-2793-2_8

Download citation

Publish with us

Policies and ethics