Skip to main content

Materials and Methods

  • Chapter
  • First Online:
Trace Metals in a Tropical Mangrove Wetland
  • 435 Accesses

Abstract

The Indian Sundarban wetland and its adjacent Hooghly (Ganges) River Estuary are situated in the low-lying, meso-macrotidal, humid, and tropical belt, influenced severely by semidiurnal tides of high amplitude. This globally significant estuarine deltaic complex deserves special attention as they support to sustain rich and diverse flora and faunal communities. However, this productive but vulnerable wetland suffers from environmental degradation and becomes susceptible to chemical pollutants including trace metals which have changed the estuarine geochemistry by complex processes. The 24 studied sampling sites are representative of the variable environmental and energy regimes that cover a wide range of substrate behavior, wave–tide climate, geomorphologic–hydrodynamic regimes, and distances from the sea (Bay of Bengal). They have diverse human interference with a variable degree of exposure to heavy metal contamination. The chapter has been dealt with details of selection of the study sites, sampling strategy, instrumental techniques in environmental chemical analyses, and application of statistical methods for interpretation of data. In addition, the diagnostic of sediment contamination and ecological risks using several important indexes along with consensus sediment quality guidelines (SQGs) are also presented along with practical examples and their solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahim GMS (2005) Holocene sediments of Tamaki Estuary: Characterisation and impact of recent human activity on an urban estuary in Auckland, New Zealand. Ph.D. thesis, University of Auckland, Auckland, New Zealand. 361p

    Google Scholar 

  • Agemian H, Chau ASY (1976) Evaluation of extraction technique for the determination of metals in aquatic sediments. Analyst 101:761–767

    Article  CAS  Google Scholar 

  • Angula E (1996) The Tomlinson pollution index applied to heavy metal, mussel–watch data: a useful index to assess coastal pollution. Sci Total Environ 187:19–56

    Article  Google Scholar 

  • Asadi SD, Subba Rao DV, Saikrishna V (2010) A comparative study of face recognition with principal component analysis and cross-correlation technique. Int J Comput Appl 10

    Google Scholar 

  • Bandyopadhay S (1998) Coastal erosion and its management in Sagar Island, south 24Parganas, West Bengal. Indian J Earth Sci 24(34):51–69

    Google Scholar 

  • Banerjee K, Senthikumar B, Purvaja R, Ramesh R (2012) Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environ Geochem Health 34(1):27–42

    Article  CAS  Google Scholar 

  • Barry RG, Chorley RJ (1987) Atmosphere, weather and climate, 5e Ă©d edn. Methuen, New York. 460 p

    Google Scholar 

  • Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2007) Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sunderban mangrove wetland, northeastern part of bay of Bengal (India). Mar Pollut Bull 54:1220–1229

    Article  CAS  Google Scholar 

  • Bretzel F, Calderisi M (2006) Metal contamination in urban soils of coastal Tuscany (Italy). Environ Monit Assess 118:319–335

    Article  CAS  Google Scholar 

  • Campbell KR (1995) Concentrations of heavy metals associated with urban runoff in fish living in Stormwater ponds. Arch Environ Contam Toxicol 27:352–356

    Google Scholar 

  • Chaiya K (2014) A factor analysis of determining success in computer or electronic parts industries in Thailand. In: Gaol FL (ed) Interdisciplinary behavior and social sciences: proceedings of the 3rd International Congress on Interdisciplinary Behavior and Social Science 2014 (ICIBSoS 2014), 1–2 November 2014, Bali, Indonesia

    Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK et al (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356

    Article  CAS  Google Scholar 

  • Chen CH, Zhenhai W (2006 August) ICA and factor analysis application in seismic profiling, IEEE International Conference on Geoscience and Remote Sensing Symposium, 1560–1563

    Google Scholar 

  • Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181

    Article  CAS  Google Scholar 

  • Damle T, Kshirsagar M (2012) Role of permutations in significance analysis of microarray and clustering of significant microarray gene list. Int J Comput Sci Issue 9 (2:1)

    Google Scholar 

  • Dyer KR (1986) Coastal and estuarine sediment dynamics. Wiley, New York

    Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324

    Article  CAS  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar[Texas]; a study in the significance of grain size parameters. Int J Sed Res 27:3–26

    Article  Google Scholar 

  • Franco-UrĂ­a A, LĂłpez-Mateo C, Roca E, Fernández Marcos ML (2009) Source identification of heavy metals in pasturel by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. American Society of Agronomy, Madison, pp. 383–412

    Google Scholar 

  • Granero S, Domingo JL (2002) Levels of metals in soils of Alcala de Henares, Spain: human health risks. Environ Int 28:159–164

    Article  CAS  Google Scholar 

  • Guang X, Jian X, Yue Z, Caiyun Z, Qing W (2010) Application of Nemerow Pollution Index in landscape river water quality assessment of Tianjin, Bioinformatics and Biomedical Engineering (iCBBE). In: 4th international conference, pp 1–4

    Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. J Wat Res 14:975–1001

    Article  Google Scholar 

  • Han YM, Du PX, Cao JJ, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355:176–186

    Article  CAS  Google Scholar 

  • Hill T, Lewicki P 2006 Statistics: methods and applications : a comprehensive reference for Science, industry, and data mining. StatSoft, Inc.

    Google Scholar 

  • Janakiraman D, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Mohan SP, Ram-Mohan V (2007) Trace metals in core sediments from Muthupet mangroves, SE coast of India: application of acid leachable technique. Environ Pollut 145:245–257

    Article  CAS  Google Scholar 

  • Karamizadeh S, Abdullah SM, Manaf AA, Zamani M, Hooman A (2013) An overview of principal component analysis. J Signal Inf Process 4(03):173

    Google Scholar 

  • Koci V, Mlejneky M, Kochankova L (2003) Toxicological evaluation of exposed SPMD membranes. Cent Eur J Chem 1:28–34

    CAS  Google Scholar 

  • Korte NE, Fernado Q (1991) A review of AsIII in groundwater. Crit Rev Environ Contam 21:1–39

    Article  CAS  Google Scholar 

  • Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrology. Plenum, New York, p 549

    Google Scholar 

  • Kumru MN, Bakac M (2003) R-mode factor analysis applied to the distribution of elements in soils from the Aydin basin, Turkey. J Geochem Explor 77:81–91

    Article  CAS  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci Total Environ 313:77–89

    Article  CAS  Google Scholar 

  • Liu B, Hu K, Jiang Z, Yang J, Luo X, Liu A (2011) Distribution and enrichment of heavy metals in a sediment core from the Pearl River estuary. Environ Earth Sci 62:265–275

    Article  CAS  Google Scholar 

  • Long ER, Morgan LG (1990) The potential for biological effects of sediment-sorbed contaminants tested in the National Sta- tus and trends Program. NOAA Tech. Memo. NOS OMA 52. National Oceanic and Atmospheric Administration, Seattle. 1990:236

    Google Scholar 

  • Long ER, Mac Donald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Long ER, Field LJ, MacDonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17:714–727

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Severn CG, Hong CB (2000) Classifying the probabilities of acute toxicity in marine sediments with empirically-derived sediment quality guidelines. Environ Toxicol Chem 19:2598–2601

    Article  CAS  Google Scholar 

  • Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  CAS  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case of Palermo (Sicily), Italy. Sci Total Environ 300:229–243

    Article  CAS  Google Scholar 

  • Marsh J (1836) Account of a method of separating small quantities of arsenic from substances with which it may be mixed. Edinburgh Philos J 21:229–236

    Google Scholar 

  • MĂĽller G (1981) Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chem Zeitung 105:157–164

    Google Scholar 

  • Navas A, Machin J (2002) Spatial distribution of heavy metals and arsenic in soils of Aragon (northeast Spain): controlling factors and environmental implications. Appl Geochem 17:961–973

    Article  CAS  Google Scholar 

  • Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek W (2005) Overview of the Face Recognition Grand Challenge. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer Society conference on, 2005, pp. 947–954

    Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei ,W., Liqiang, Y., Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J China Univ Geosci 19 (2008) 230–241.

    Google Scholar 

  • Qinna Z, Qixin X, Kai Y (2005) Application of potential ecological risk index in soil pollution of typical polluting industries. J East China Norm Univ Nat Sci 1:110–115

    Google Scholar 

  • Rakshit D, Biswas SN, Sarkar SK, Bhattacharya BD, Godhantaraman N, Satpathy KK (2014) Seasonal variations in species composition, abundance, biomass and production rate of tintinnids (Ciliata: protozoa) along the Hooghly (Ganges) river estuary, India: a multivariate approach. Environ Monit Assess 186(5):3063–3078

    Article  CAS  Google Scholar 

  • Rollinson HR (2014) Using geochemical data: evaluation, presentation, interpretation. Routledge

    Google Scholar 

  • Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manag 90:3382–3390

    Article  CAS  Google Scholar 

  • Sarbu C, Pop HF (2005) Principal component analysis versus fuzzy principal component analysis. A case study, the quality of Danube water 1985-1996. Talanta 65:1215–1220

    Article  CAS  Google Scholar 

  • Sarkar SK, Bhattacharya B, Das R (2003) Seasonal variations and inherent variability of selenium in marine biota of a tropical wetland ecosystem: implications for bioindicator species. Ecol Indicat 2(4): 367–375. Elsevier Press, Oxford

    Google Scholar 

  • Sarkar SK, Saha M, Takada H, Bhattacharya A, Mishra P, Bhattacharya B (2007) Water quality management in the lower stretch of the river Ganges, east coast of India: an approach through environmental education. J Clean Prod 15:65–73

    Article  Google Scholar 

  • Song Y, Choi MS (2017) Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations. Mar Pollut Bull 117:532–537

    Article  CAS  Google Scholar 

  • Soto EG, Rodriguez EA, Fernandez EF, Rodriguez DP (1996) Review: analytical methods for arsenic speciation in environmental samples. Cienc 4:149–164

    Google Scholar 

  • Sparks T (2000) Statistics in ecotoxicology. Wiley, Chichester

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull Geol Soc am 72:175–192

    Article  CAS  Google Scholar 

  • Voutsinou-Taliadouri F, Varnavas SP (1995) Geochemical and sedimentalogical patterns in the Thermaikos Gulf,North-WestAegean Sea, formed from multisource of elements. Estuar Coast Shelf Sci 40:295–320

    Article  CAS  Google Scholar 

  • Walkey A, Black TA (1934) An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Sci 37:23–38

    Google Scholar 

  • Wang XS, Qin Y, Sang SX (2005) Accumulation and sources of heavy metals in urban topsoils: a case study from the city of Xuzhou, China. Environ Geol 48:101–107

    Article  CAS  Google Scholar 

  • Wang ZH, Feng J, Jiang T, Gu YG (2013) Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea. Mar Pollut Bull 76:383–388

    Article  CAS  Google Scholar 

  • Wilcke W, Muller S, Kanchanakool N, Zech W (1998) Urban soil contamination in Bangkok: heavy metal and aluminum partitioning in topsoils. Geoderma 86:211–228

    Article  CAS  Google Scholar 

  • Zhou HY, Peng XT, Pan JM (2004) Distribution, source and enrichment of some chemical elements in sediments of the Pearl River estuary. China Cont Shelf Res 24:1857–1875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarkar, S.K. (2018). Materials and Methods. In: Trace Metals in a Tropical Mangrove Wetland . Springer, Singapore. https://doi.org/10.1007/978-981-10-2793-2_2

Download citation

Publish with us

Policies and ethics