Skip to main content

Other Physiologic Indices for Epicardial Stenosis

  • Chapter
  • First Online:
Coronary Imaging and Physiology
  • 1848 Accesses

Abstract

While invasive coronary angiography (CAG) has been considered the diagnostic standard for evaluating patients with suspected or known coronary artery disease (CAD), adjunctive evaluations are proposed because of its inability to determine functional significance of coronary stenosis despite the importance of objective evidence of ischemia to improve patients’ symptoms and outcomes [1–3]. Advances in intracoronary physiologic measurements allowed interventional cardiologists to have useful information to determine treatment strategies for patients with CAD. The cost-effectiveness is also improved when coronary physiology is used to guide coronary revascularization compared with that guided by CAG alone [4–7]. In particular, fractional flow reserve (FFR) by pressure-wire technology has been confirmed to provide useful guidance for determining treatment strategy in various clinical subsets of patients and coronary lesions and is recommended by current guidelines to detect ischemia-producing lesions after diagnostic CAG when objective evidence of inducible ischemia is not available [8–11]. Recently, as more refined methods for invasively determining the functional significance of CAD have been developed and are being extensively tested, interest in coronary physiology has been renewed and increasing. In this chapter, we review and summarize the main characteristics of other invasive functional indices of epicardial segment of coronary circulatory system, besides FFR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Bruyne B, McFetridge K, Toth G. Angiography and fractional flow reserve in daily practice: why not (finally) use the right tools for decision-making? Eur Heart J. 2013;34(18):1321–2.

    Article  PubMed  Google Scholar 

  2. Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636–43.

    Article  PubMed  Google Scholar 

  3. Patel MR, Rao SV. Ischemia-driven revascularization: demonstrating and delivering a mature procedure in a mature way. Circ Cardiovasc Qual Outcomes. 2013;6(3):250–2.

    Article  PubMed  Google Scholar 

  4. Fearon WF, Bornschein B, Tonino PA, Gothe RM, Bruyne BD, Pijls NH, et al. Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation. 2010;122(24):2545–50.

    Article  PubMed  Google Scholar 

  5. Kim YH, Park SJ. Ischemia-guided percutaneous coronary intervention for patients with stable coronary artery disease. Circ J. 2013;77(8):1967–74.

    Article  PubMed  Google Scholar 

  6. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56(3):177–84.

    Article  PubMed  Google Scholar 

  7. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  8. Nallamothu BK, Tommaso CL, Anderson HV, Anderson JL, Cleveland JC Jr, Dudley RA, et al. ACC/AHA/SCAI/AMA-Convened PCPI/NCQA 2013 performance measures for adults undergoing percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Association-Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance. Circulation. 2014;129(8):926–49.

    Article  PubMed  Google Scholar 

  9. Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA. ACCF/SCAI/STS/AATS/AHA/ASNC/HFSA/SCCT 2012 appropriate use criteria for coronary revascularization focused update: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2012;59(9):857–81.

    Article  PubMed  Google Scholar 

  10. Task Force on Myocardial Revascularization of the European Society of Cardiology, the European Association for Cardio-Thoracic Surgery, European Association for Percutaneous Cardiovascular Interventions, Wijns W, Kolh P, Danchin N, et al. Guidelines on myocardial revascularization. Eur Heart J. 2010;31(20):2501–55.

    Article  Google Scholar 

  11. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003.

    Article  Google Scholar 

  12. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation. 1992;85(5):1899–911.

    Article  CAS  PubMed  Google Scholar 

  13. Joye JD, Schulman DS, Lasorda D, Farah T, Donohue BC, Reichek N. Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol. 1994;24(4):940–7.

    Article  CAS  PubMed  Google Scholar 

  14. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94(8):1842–9.

    Article  PubMed  Google Scholar 

  15. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55(3):173–85.

    Article  PubMed  Google Scholar 

  16. Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054–61.

    Article  PubMed  Google Scholar 

  17. Takahashi T, Hiasa Y, Ohara Y, Miyazaki S, Ogura R, Miyajima H, et al. Usefulness of coronary flow reserve immediately after primary coronary angioplasty for acute myocardial infarction in predicting long-term adverse cardiac events. Am J Cardiol. 2007;100(5):806–11.

    Article  PubMed  Google Scholar 

  18. Yoon MH, Tahk SJ, Yang HM, Woo SI, Lim HS, Kang SJ, et al. Comparison of accuracy in the prediction of left ventricular wall motion changes between invasively assessed microvascular integrity indexes and fluorine-18 fluorodeoxyglucose positron emission tomography in patients with ST-elevation myocardial infarction. Am J Cardiol. 2008;102(2):129–34.

    Article  PubMed  Google Scholar 

  19. Lee JM, Jung JH, Hwang D, Park J, Fan Y, Na SH, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol. 2016;67(10):1158–69.

    Article  PubMed  Google Scholar 

  20. Baumgart D, Haude M, Goerge G, Ge J, Vetter S, Dagres N, et al. Improved assessment of coronary stenosis severity using the relative flow velocity reserve. Circulation. 1998;98(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  21. Chamuleau SA, Meuwissen M, van Eck-Smit BL, Koch KT, de Jong A, de Winter RJ, et al. Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestamibi single-photon emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol. 2001;37(5):1316–22.

    Article  CAS  PubMed  Google Scholar 

  22. Meuwissen M, Siebes M, Chamuleau SA, van Eck-Smit BL, Koch KT, de Winter RJ, et al. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation. 2002;106(4):441–6.

    Article  PubMed  Google Scholar 

  23. Verberne HJ, Meuwissen M, Chamuleau SA, Verhoeff BJ, van Eck-Smit BL, Spaan JA, et al. Effect of simultaneous intracoronary guidewires on the predictive accuracy of functional parameters of coronary lesion severity. Am J Physiol Heart Circ Physiol. 2007;292(5):H2349–55.

    Article  CAS  PubMed  Google Scholar 

  24. Meuwissen M, Chamuleau SA, Siebes M, de Winter RJ, Koch KT, Dijksman LM, et al. The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheter Cardiovasc Interv. 2008;71(3):291–7.

    Article  PubMed  Google Scholar 

  25. Gruntzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979;301(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  26. Echavarria-Pinto M, Gonzalo N, Ibanez B, Petraco R, Jimenez-Quevedo P, Sen S, et al. Low coronary microcirculatory resistance associated with profound hypotension during intravenous adenosine infusion: implications for the functional assessment of coronary stenoses. Circ Cardiovasc Interv. 2014;7(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  27. Jeremias A, Filardo SD, Whitbourn RJ, Kernoff RS, Yeung AC, Fitzgerald PJ, et al. Effects of intravenous and intracoronary adenosine 5′-triphosphate as compared with adenosine on coronary flow and pressure dynamics. Circulation. 2000;101(3):318–23.

    Article  CAS  PubMed  Google Scholar 

  28. Jeremias A, Whitbourn RJ, Filardo SD, Fitzgerald PJ, Cohen DJ, Tuzcu EM, et al. Adequacy of intracoronary versus intravenous adenosine-induced maximal coronary hyperemia for fractional flow reserve measurements. Am Heart J. 2000;140(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  29. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (adenosine vasodilator independent stenosis evaluation) study. J Am Coll Cardiol. 2012;59(15):1392–402.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson RF, White CW. Measurement of maximal coronary flow reserve: a technique for assessing the physiologic significance of coronary arterial lesions in humans. Herz. 1987;12(3):163–76.

    CAS  PubMed  Google Scholar 

  31. Petraco R, Escaned J, Sen S, Nijjer S, Asrress KN, Echavarria-Pinto M, et al. Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry. EuroIntervention. 2013;9(1):91–101.

    Article  PubMed  Google Scholar 

  32. Sen S, Asrress KN, Nijjer S, Petraco R, Malik IS, Foale RA, et al. Diagnostic classification of the instantaneous wave-free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (classification accuracy of pressure-only ratios against indices using flow study). J Am Coll Cardiol. 2013;61(13):1409–20.

    Article  PubMed  Google Scholar 

  33. Petraco R, Park JJ, Sen S, Nijjer SS, Malik IS, Echavarria-Pinto M, et al. Hybrid iFR-FFR decision-making strategy: implications for enhancing universal adoption of physiology-guided coronary revascularisation. EuroIntervention. 2013;8(10):1157–65.

    Article  PubMed  Google Scholar 

  34. Escaned J, Echavarria-Pinto M, Garcia-Garcia HM, van de Hoef TP, de Vries T, Kaul P, et al. Prospective assessment of the diagnostic accuracy of instantaneous wave-free ratio to assess coronary stenosis relevance: results of ADVISE II international, multicenter study (adenosine vasodilator independent stenosis evaluation II). JACC Cardiovasc Interv. 2015;8(6):824–33.

    Article  PubMed  Google Scholar 

  35. Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol. 2014;63(13):1253–61.

    Article  PubMed  Google Scholar 

  36. Echavarria-Pinto M, van de Hoef TP, Garcia-Garcia HM, de Vries T, Serruys PW, Samady H, et al. Diagnostic accuracy of baseline distal-to-aortic pressure ratio to assess coronary stenosis severity: a post-hoc analysis of the ADVISE II study. JACC Cardiovasc Interv. 2015;8(6):834–6.

    Article  PubMed  Google Scholar 

  37. Kim JS, Lee HD, Suh YK, Kim JH, Chun KJ, Park YH, et al. Prediction of fractional flow reserve without hyperemic induction based on resting baseline Pd/Pa. Korean Circ J. 2013;43(5):309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Echavarria-Pinto M, van de Hoef TP, van Lavieren MA, Nijjer S, Ibanez B, Pocock S, et al. Combining baseline distal-to-aortic pressure ratio and fractional flow reserve in the assessment of coronary stenosis severity. JACC Cardiovasc Interv. 2015;8(13):1681–91.

    Article  PubMed  Google Scholar 

  39. Plein S, Motwani M. Fractional flow reserve as the reference standard for myocardial perfusion studies: fool's gold? Eur Heart J Cardiovasc Imaging. 2013;14(12):1211–3.

    Article  PubMed  Google Scholar 

  40. Park JJ, Petraco R, Nam CW, Doh JH, Davies J, Escaned J, et al. Clinical validation of the resting pressure parameters in the assessment of functionally significant coronary stenosis; results of an independent, blinded comparison with fractional flow reserve. Int J Cardiol. 2013;168(4):4070–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Seok Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lim, HS., Yang, HM. (2018). Other Physiologic Indices for Epicardial Stenosis. In: Hong, MK. (eds) Coronary Imaging and Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2787-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2787-1_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2786-4

  • Online ISBN: 978-981-10-2787-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics