Skip to main content

Interpretation of Optical Coherence Tomography: Quantitative Measurement

  • Chapter
  • First Online:
Book cover Coronary Imaging and Physiology
  • 1856 Accesses

Abstract

Obtaining of good-quality image is essential to make accurate measurements. The image should be correctly calibrated for z-offset, the zero-point setting of the system before measurements. The definition of lesion, reference, and stented segment from the Journal of American College of Cardiology intravascular ultrasound (IVUS) consensus document has been adopted for optical coherence tomography (OCT) [1]. For standardization of OCT measurement, expert review documents and consensus standards have been published previously [2–4]. Studies regarding the accuracy and the reproducibility of qualitative and quantitative OCT measurements have been published previously [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintz GS, Nissen SE, Anderson WD, Rosenfield K, Bailey SR, Siegel RJ, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS): a report of the American College of Cardiology task force on clinical expert consensus documents developed in collaboration with the European Society of Cardiology endorsed by the Society of Cardiac Angiography and Interventions. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  2. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31:401–15.

    Article  PubMed  Google Scholar 

  3. Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J. 2012;33:2513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tearney GJ, Regar E, Akasaka T, Adroaemssems T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol. 2012;59:1058–72.

    Article  PubMed  Google Scholar 

  5. Gerbaud E, Weisz G, Tanaka A, Kashiwagi M, Shimizu T, Wang L, et al. Multi-laboratory inter-institute reproducibility study of IVOCT and IVUS assessments using published consensus document definitions. Eur Heart J Cardiovasc Imaging. 2016;17:756–64.

    Article  PubMed  Google Scholar 

  6. Kubo T, Akasaka T, Shite J, Suzuki T, Uemura S, Yu B, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013;6:1095–104.

    Article  PubMed  Google Scholar 

  7. Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, et al. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv. 2008;72:228–35.

    Article  PubMed  Google Scholar 

  8. Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): study protocol for a randomized controlled trial. J Cardiol. 2016;68:455–60.

    Article  PubMed  Google Scholar 

  9. Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388:2618–28.

    Article  PubMed  Google Scholar 

  10. Ben-Dor I, Torguson R, Deksissa T, Bui AB, Xue Z, Satler LF, et al. Intravascular ultrasound lumen area parameters for assessment of physiological ischemia by fractional flow reserve in intermediate coronary artery stenosis. Cardiovasc Revasc Med. 2012;13:177–82.

    Article  PubMed  Google Scholar 

  11. Kang SJ, Lee JY, Ahn JM, Mintz GS, Kim WJ, Park DW, et al. Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv. 2011;4:65–71.

    Article  PubMed  Google Scholar 

  12. Koo BK, Yang HM, Doh JH, Choe J, Lee SY, Yoon CH, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4:803–11.

    Article  PubMed  Google Scholar 

  13. Waksman R, Legutko J, Singh J, Orlando Q, Marso S, Schloss T, et al. FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol. 2013;61:917–23.

    Article  PubMed  Google Scholar 

  14. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriques V, Jimenez-Quevedo P, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59:1080–9.

    Article  PubMed  Google Scholar 

  15. Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76:2218–25.

    Article  PubMed  Google Scholar 

  16. Ha J, Kim JS, Lim J, Kim G, Lee S, Lee JS, et al. Assessing computational fractional flow reserve from optical coherence tomography in patients with intermediate coronary stenosis in the left anterior descending artery. Cir Cardiovasc Interv. 2016;9(8):e003613. doi:10.1161/CIRCINTERVENTIONS.116.003613.

    Article  Google Scholar 

  17. Taniwaki M, Radu MD, Zaugg S, Amabile N, Carcia-Carcia HM, Yamaji K, et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation. 2016;133:650–60.

    Article  CAS  PubMed  Google Scholar 

  18. Prati F, Kodama T, Romagnoli E, Gatto L, Di Vito L, Ramazzotti V, et al. Suboptimal stent deployment is associated with subacute stent thrombosis: optical coherence tomography insights from a multicenter matched study. From the CLI foundation investigators: the CLI-THRO study. Am Heart J. 2015;169:249–56.

    Article  PubMed  Google Scholar 

  19. Kim JS, Ha J, Kim BK, Shin DH, Ko YG, Choi D, et al. The relationship between post-stent strut apposition and follow-up strut coverage assessed by a contour plot optical coherence tomography analysis. JACC Cardiovasc Interv. 2014;7:641–51.

    Article  PubMed  Google Scholar 

  20. Im E, Kim BK, Ko YG, Shin DH, Kim JS, Choi D, et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. Circ Cardiovasc Interv. 2014;7:88–96.

    Article  CAS  PubMed  Google Scholar 

  21. Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv. 2012;5:12–20.

    Article  PubMed  Google Scholar 

  22. Won H, Shin DH, Kim BK, Mintz GS, Kim JS, Ko YG, et al. Optical coherence tomography derived cut-off value of uncovered stent struts to predict adverse clinical outcomes after drug-eluting stent implantation. Int J Cardiovasc Imaging. 2013;29:1255–63.

    Article  PubMed  Google Scholar 

  23. Kim JS, Jang IK, Fan C, Kim TH, Kim JS, Park SM, et al. Evaluation in 3 months duration of neointimal coverage after zotarolimus-eluting stent implantation by optical coherence tomography: the ENDEAVOR OCT trial. JACC Cardiovasc Interv. 2009;2:1240–7.

    Article  PubMed  Google Scholar 

  24. Lee KS, Lee JZ, Hsu CH, Husnain M, Riaz H, Riaz IB, et al. Temporal trends in strut-level optical coherence tomography evaluation of coronary stent coverage: a systematic review and meta-analysis. Catheter Cardiovasc Interv. 2016;88:1083–93.

    Article  PubMed  Google Scholar 

  25. Matsumoto D, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J. 2007;28:961–7.

    Article  CAS  PubMed  Google Scholar 

  26. Toledano Delgado FJ, Alvarez-Ossorio MP, de Lezo Cruz-Conde JS, Bellido FM, Romero Moreno MA, Femandez-Aceytuno AM, et al. Optical coherence tomography evaluation of late strut coverage patterns between first-generation drug-eluting stents and everolimus-eluting stent. Catheter Cardiovasc Interv. 2014;84:720–6.

    Article  PubMed  Google Scholar 

  27. Liu Y, Shimamura K, Kubo T, Tanaka A, Kitabata H, Ino Y, et al. Comparison of longitudinal geometric measurement in human coronary arteries between frequency-domain optical coherence tomography and intravascular ultrasound. Int J Cardiovasc Imaging. 2014;30:271–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-Yeon Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Choi, SY. (2018). Interpretation of Optical Coherence Tomography: Quantitative Measurement. In: Hong, MK. (eds) Coronary Imaging and Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2787-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2787-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2786-4

  • Online ISBN: 978-981-10-2787-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics