Skip to main content

Numerical Formulation of Near-Critical CO2 Flow in Microchannels

  • Chapter
  • First Online:
Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid

Part of the book series: Springer Theses ((Springer Theses))

  • 619 Accesses

Abstract

To further explore the critical thermal convective flow, numerical simulations of basic microchannel models with CO2 flow near its critical point are reported in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar V, Paraschivoiu M, Nigam KDP (2011) Single-phase fluid flow and mixing in microchannels. Chem Eng Sci 66:1329–1373

    Article  Google Scholar 

  2. Chen L, Zhang XR, Okajima J, Maruyama S (2013) Thermal relaxation and critical instability of near-critical fluid microchannel flow. Phys Rev E 87:043016

    Article  Google Scholar 

  3. Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Trans 53:4112–4122

    Article  MATH  Google Scholar 

  4. Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transfer 133:2505–2513

    Google Scholar 

  5. Chen L, Zhang XR, Yamaguchi H, Liu ZS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Trans 53:4101–4111

    Article  MATH  Google Scholar 

  6. Chen L, Zhang XR, Cao SM, Bai H (2012) Study of trans-critical CO2 natural convection flow with unsteady heat input and its implications on system control. Int J Heat Mass Trans 55:7119–7132

    Article  Google Scholar 

  7. Jounet A, Zappoli B, Mojtabi A (2000) Rapid thermal relaxation in near-critical fluids and critical speeding up: discrepancies caused by boundary effects. Phys Rev Lett 84:3224–3228

    Article  Google Scholar 

  8. Chiwata Y, Onuki A (2001) Thermal plumes and convection in highly compressible fluids. Phys Rev Lett 87:114301

    Article  Google Scholar 

  9. Zappoli B, Bailly D, Garrabos Y, Neindre BL, Guenoun P, Beysens D (1990) Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys Rev A 41:2264–2268

    Article  Google Scholar 

  10. Steinke ME, Kandlikar SG (2006) Single-phase liquid friction factors in microchannels. Int J Therm Sci 45:1073–1083

    Article  Google Scholar 

  11. Koo J, Kleinstreuer C (2005) Analysis of surface roughness effects on heat transfer in micro-conduits. Int J Heat Mass Trans 48:2625–2634

    Article  MATH  Google Scholar 

  12. Rostami AA, Mujumdar AS, Saniei N (2002) Flow and heat transfer for gas flowing in microchannels: a review. Heat Mass Trans 38:359–367

    Article  MATH  Google Scholar 

  13. Rostami AA, Saniei N, Mujumdar AS (2000) Liquid flow and heat transfer in microchannels: a review. Heat Technol 18:59–68

    MATH  Google Scholar 

  14. Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651

    Article  Google Scholar 

  15. Flockhart SM, Dhariwal RS (1998) Experimental and numerical investigation into the flow characteristics of channels etched in <100> silicon. ASME J Fluids Eng 120:291–295

    Article  Google Scholar 

  16. Cui HH, Li ZH (2004) Flow characteristics of liquids in micro-tubes driven by a high pressure. Phys Fluids 16(5):1803–1810

    Article  MATH  Google Scholar 

  17. Rosa P, Karayiannis TG, Collins MW (2009) Single-phase heat transfer in microchannels: the importance of scaling effects. Appl Therm Eng 29:3447–3468

    Article  Google Scholar 

  18. Ducoulombier M, Colasson S, Haberschill P, Tingaud F (2011) Charge reduction experimental investigation of CO2 single-phase flow in a horizontal micro-channel with constant heat flux conditions. Int J Refrig 34:827–833

    Article  Google Scholar 

  19. Zhao CX, He LZ, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66:1463–1479

    Article  Google Scholar 

  20. Zappoli B, Carles P (1995) Thermoacoustic nature of the critical speeding-up. Euro J Mech B Fluids 14:41–65

    MATH  Google Scholar 

  21. Bailly D, Zappoli B (2000) Hydrodynamic theory of density relaxation in near-critical fluids. Phys Rev E 62:2353–2368

    Article  Google Scholar 

  22. Jounet A, Mojtabi A, Ouazzani J, Zappoli B (2000) Low-frequency vibrations in a near critical fluid. Phys Fluids 12:197–205

    Article  MATH  Google Scholar 

  23. Frohlich T, Beysens D, Garrabos Y (2006) Piston effect induced thermal jets in near-critical fluids. Phys Rev E 74:046307

    Article  Google Scholar 

  24. Frohlich T, Guenoun P, Bonetti M, Perrot F, Beysens D, Garrabos Y, Neindre B, Bravais P (1996) Adiabatic versus conductive heat transfer in off-critical SF6 in the absence of convection. Phys Rev E 54:1544–1549

    Article  Google Scholar 

  25. Garrabos Y, Bonetti M, Beysens D, Perrot F, Frohlich T, Carles P, Zappoli B (1998) Relaxation of a supercritical fluid after a heat pulse in the absence of gravity effects: theory and experiments. Phys Rev E 57:5665–5681

    Article  Google Scholar 

  26. Chen L, Zhang XR, Okajima J, Maruyama S (2013) Numerical simulation of near-critical fluid convective flow mixing in microchannels. Chem Eng Sci 97:67–80

    Article  Google Scholar 

  27. Chen L, Zhang XR, Okajima J, Komiya A, Maruyama S (2016) Numerical simulation of stability behaviors and heat transfer characteristics for near-critical fluid microchannel flows. Energ Convers Manag 110:407–418

    Article  Google Scholar 

  28. Zhong F, Meyer H (1995) Density equilibration near the liquid-vapor critical point of a pure fluid: single phase T > Tc. Phys Rev E 51:3223–3241

    Article  Google Scholar 

  29. Zappoli B (2003) Near-critical fluid hydrodynamics. Comptes Rendus Mecanique 331:713–726

    Article  MATH  Google Scholar 

  30. Miura Y, Yoshihara S, Ohnishi M, Honda K, Matsumoto M, Kawai J, Ishikawa M, Kobayashi H, Onuki A (2006) High-speed observation of the piston effect near the gas-liquid critical point. Phys Rev E 74:010101 (R)

    Google Scholar 

  31. Carles P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11

    Article  Google Scholar 

  32. Onuki A, Hao H, Ferrell RA (1990) Fast adiabatic equilibrium in a single-component fluid near the liquid-vapor critical point. Phys Rev A 41:2256–2260

    Article  Google Scholar 

  33. Boukari H, Shaumeyer JN, Briggs ME, Gammon RW (1990) Critical speeding up in pure fluids. Phys Rev A 41:2260–2264

    Article  Google Scholar 

  34. Wilkinson RA (1998) Density relaxation of liquid-vapor critical fluids in earth’s gravity. Int J Thermo 19:1175–1183

    Article  Google Scholar 

  35. Garrabos Y, Beysens D, Lecountre C, Dejoan A, Polezhaev V, Emelianov V (2007) Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys Rev E 75:056317

    Article  Google Scholar 

  36. Nakano A, Shiraishi M, Murakami M (2001) Application of laser holography interferometer to heat transport phenomena near the critical point of nitrogen. Cryogenics 41:429–435

    Article  Google Scholar 

  37. Nakano A, Shiraishi M (2005) Piston effect in supercritical nitrogen around the pseudo-critical line. Int Commun Heat mass Trans 32:1152–1164

    Article  Google Scholar 

  38. Nakano A, Shiraishi M (2005) Visualization for heat and mass transport phenomena in supercritical artificial air. Cryogenics 45:557–565

    Article  Google Scholar 

  39. Maekawa T, Ishii K, Ohnishi M, Yoshihara S (2002) Convective instabilities induced in a critical fluid. Adv Space Res 29:589–598

    Article  Google Scholar 

  40. Ohnishi M, Yoshihara S, Sakurai M, Miura Y, Ishikawa M, Kobayshi H, Takenouchi T, Kawai J, Honda K, Matsumoto M (2005) Ultra-sensitive high-speed density measurement of the ‘piston effect’ in a critical fluid. Microgravity Sci Technol 16:306–310

    Article  Google Scholar 

  41. Beysens D, Chatain D, Nikolayev VS, Ouazzani J, Garrabos Y (2010) Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys Rev E 82:061126

    Article  Google Scholar 

  42. Assenheimer M, Steinberg V (1993) Rayleigh-Bénard convection near the gas-liquid critical point. Phys Rev Lett 70:3888

    Article  Google Scholar 

  43. Azuma H, Yoshihara S, Onishi M, Ishii K, Masuda S, Maekawa T (1999) Natural convection driven in CO2 near its critical point under terrestrial gravity conditions. Int J Heat Mass Trans 42:771–774

    Article  Google Scholar 

  44. Melnikov DE, Ryzhkov II, Mialdun A, Shevtsova V (2008) Thermovibrational convection in microgravity: preparation of a parabolic flight experiment. Microgravity Sci Technol 20:29–39

    Article  Google Scholar 

  45. Bartscher C, Straub J (2002) Dynamic behavior of a pure fluid at and near its critical density under microgravity and 1 g. Int J Thermophys 23:77–87

    Article  Google Scholar 

  46. NIST Standard Reference Database-REFPROP, Version 8.0 (2006)

    Google Scholar 

  47. Zappoli B, Beysens D, Garrabos Y (2015) Heat transfer and related effects in supercritical fluids. Springer, New York, London

    Book  MATH  Google Scholar 

  48. Amiroudine S, Zappoli B (2003) Piston effect induced thermal oscillations at the Rayleigh-Benard threshold in supercritical 3He. Phys Rev Lett 90:105303

    Article  Google Scholar 

  49. Shen B, Zhang P (2011) Thermoacoustic waves along the critical isochore. Phys Rev E 83:011115

    Article  Google Scholar 

  50. Cheng L, Thome JR (2009) Cooling of microprocessors using flow boiling CO2 in a micro-evaporator: preliminary analysis and performance comparison. Appl Therm Eng 29:2426–2432

    Article  Google Scholar 

  51. Dimmic GR, Chatoorgoon VV, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38

    Article  Google Scholar 

  52. Kuang G, Ohadi MM, Zhao Y (2004) Experimental study on gas cooling heat transfer for supercritical CO2 in microchannels. In: Proceedings of the 2nd international conference on microchannels and minichannels, June 17–19, Rochester, New York, USA, pp. 325–332

    Google Scholar 

  53. Wang Q, Guan YX, Yao SJ, Zhu ZQ (2011) Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J Supercrit Fluids 56:97–104

    Article  Google Scholar 

  54. Luong TD, Phan VN, Nguyen NT (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluid Nanofluid 10:619–625

    Article  Google Scholar 

  55. Zhang Y, Wang TH (2012) Micro magnetic gyromixer for speeding up reactions in droplets. Microfluid Nanofluid 12(5):787–794

    Article  Google Scholar 

  56. Falk FL, Commenge JM (2010) Performance comparison of micromixers. Chem Eng Sci 65:405–411

    Article  Google Scholar 

  57. Johnson BK, Prud’homme PK (2003) Chemical processing and micromixing in confined impinging jets. AIChE J 49:2264–2282

    Google Scholar 

  58. Aoki N, Umei R, Yoshida A, Mae K (2011) Design method for micromixers considering influence of channel confluence and bend on diffusion length. Chem Eng J 167:643–650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chen, L. (2017). Numerical Formulation of Near-Critical CO2 Flow in Microchannels. In: Microchannel Flow Dynamics and Heat Transfer of Near-Critical Fluid. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-2784-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2784-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2783-3

  • Online ISBN: 978-981-10-2784-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics