Metabolites Selection and Classification of Metabolomics Data on Alzheimer’s Disease Using Random Forest

  • Mohammad Nasir AbdullahEmail author
  • Bee Wah Yap
  • Yuslina Zakaria
  • Abu Bakar Abdul Majeed
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 652)


Alzheimer’s disease (AD) is neurodegenerative disorder characterized by the gradual memory loss, impairment of cognitive functions and progressive disability. It is known from previous studies that symptoms of AD are due to synaptic dysfunction and neuronal death in the area of the brain, which performs memory consolidation. Thus, the investigation of deviations in various cellular metabolite linkages is crucial to advance our understanding of early disease mechanism and to identify novel therapeutic targets. This study aims to identify small sets of metabolites that could be potential biomarkers of AD. Liquid chromatography/mass spectrometry-quadrupole time of flight (LC/MS-QTOF)-based metabolomics data were used to determine potential biomarkers. The metabolic profiling detected a total of 100 metabolites for 55 AD patients and 55 healthy control. Random forest (RF), a supervised classification algorithm was used to select the important features that might elucidate biomarkers of AD. Mean decrease accuracy of .05 or higher indicates important variables. Out of 100 metabolites, 10 were significantly modified, namely N-(2-hydroxyethyl) icosanamide which had the highest Gini index followed by X11-12-dihyroxy (arachidic) acid, N-(2-hydroxyethyl) palmitamide, phytosphingosine, dihydrosphingosine, deschlorobenzoyl indomenthacin, XZN-2-hydroxyethyl (icos) 11-enamide, X1-hexadecanoyl (sn) glycerol, trypthophan and dihydroceramide C2.


Alzheimer’s disease Biomarkers Metabolite Random forest 



This work is supported by the Ministry of Higher Education (MOHE) under Long Term Research Grant Scheme (Reference no: 600-RMI/LRGS 5/3 [3/2012]). The authors would like to thank Universiti Teknologi MARA (UiTM) for supporting this research. Lastly, we would like to thank Che Adlia Enche Ady at Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA for her technical help and generosity in providing the metabolomics data.


  1. 1.
    Lv, J., Ma, S., Zhang, X., Zheng, L., Ma, Y., Zhao, X., Lai, W., Shen, H., Wang, Q., Ji, J.: Quantitative proteomics reveals that PEA15 regulates astroglial Abeta phagocytosis in an Alzheimer’s disease mouse model. J. Proteomics 110C, 45–58 (2014)CrossRefGoogle Scholar
  2. 2.
    Motta, M., Imbesi, R., Di Rosa, M., Stivala, F., Malaguarnera, L.: Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol. Lett. 114, 46–51 (2007)CrossRefGoogle Scholar
  3. 3.
    Sillen, A., Forsell, C., Lilius, L., Axelman, K., Bjork, B.F., Onkamo, P., Kere, J., Winblad, B., Graff, C.: Genome scan on Swedish Alzheimer’s disease families. Mol. Psychiatry 11, 182–186 (2006)CrossRefGoogle Scholar
  4. 4.
    Darawi, M.N., Ai-Vyrn, C., Ramasamy, K., Hua, P.P., Pin, T.M., Kamaruzzaman, S.B., Majeed, A.B.: Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms. BMC Med. Genet. 14, 27 (2013)CrossRefGoogle Scholar
  5. 5.
    Doecke, J.D., Laws, S.M., Faux, N.G., Wilson, W., Burnham, S.C., Lam, C.P., Mondal, A., Bedo, J., Bush, A.I., Brown, B., De Ruyck, K., Ellis, K.A., Fowler, C., Gupta, V.B., Head, R., Macaulay, S.L., Pertile, K., Rowe, C.C., Rembach, A., Rodrigues, M., Rumble, R., Szoeke, C., Taddei, K., Taddei, T., Trounson, B., Ames, D., Masters, C.L., Martins, R.N., Alzheimer’s Disease Neuroimaging, I., Australian Imaging, B., Lifestyle Research, G.: Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch. Neurol. 69, 1318–1325 (2012)CrossRefGoogle Scholar
  6. 6.
    Silva, A.R., Grinberg, L.T., Farfel, J.M., Diniz, B.S., Lima, L.A., Silva, P.J., Ferretti, R.E., Rocha, R.M., Filho, W.J., Carraro, D.M., Brentani, H.: Transcriptional alterations related to neuropathology and clinical manifestation of Alzheimer’s disease. PLoS ONE 7, e48751 (2012)CrossRefGoogle Scholar
  7. 7.
    Cayton, H., Graham, N., Warner, J.: Alzheimer’s and Other Dementias. Class Publishing, London (2008)Google Scholar
  8. 8.
    Zetterberg, H., Mattsson, N., Shaw, L.M., Blennow, K.: Biochemical markers in Alzheimer’s disease clinical trials. Biomark. Med. 4, 91–98 (2010)CrossRefGoogle Scholar
  9. 9.
    Humpel, C.: Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol. 29, 26–32 (2011)CrossRefGoogle Scholar
  10. 10.
    Sala, G., Galimberti, G., Canevari, C., Raggi, M.E., Isella, V., Facheris, M., Appollonio, I., Ferrarese, C.: Peripheral cytokine release in Alzheimer patients: correlation with disease severity. Neurobiol. Aging 24, 909–914 (2003)CrossRefGoogle Scholar
  11. 11.
    Ibanez, C., Simo, C., Barupal, D.K., Fiehn, O., Kivipelto, M., Cedazo-Minguez, A., Cifuentes, A.: A new metabolomic workflow for early detection of Alzheimer’s disease. J. Chromatogr. A 1302, 65–71 (2013)CrossRefGoogle Scholar
  12. 12.
    Mayeux, R., Saunders, A.M., Shea, S., Mirra, S., Evans, D., Roses, A.D., Hyman, B.T., Crain, B., Tang, M.X., Phelps, C.H.: Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N. Engl. J. Med. 338, 506–511 (1998)CrossRefGoogle Scholar
  13. 13.
    Whiley, L., Sen, A., Heaton, J., Proitsi, P., Garcia-Gomez, D., Leung, R., Smith, N., Thambisetty, M., Kloszewska, I., Mecocci, P., Soininen, H., Tsolaki, M., Vellas, B., Lovestone, S., Legido-Quigley, C., AddNeuroMed, C.: Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging 35, 271–278 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, D.C., Sun, C.H., Liu, L.Y., Sun, X.H., Jin, X.W., Song, W.L., Liu, X.Q., Wan, X.L.: Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer’s disease. Neurobiol. Aging 33, 1057–1066 (2012)CrossRefGoogle Scholar
  15. 15.
    Alzheimer’s Disease Foundation: About Alzheimer’s (2014)Google Scholar
  16. 16.
    Ibáñez, C., Simó, C., Cifuentes, A.: Metabolomics in Alzheimer’s disease research. Electrophoresis. n/a–n/a (2013)Google Scholar
  17. 17.
    Liang, Q., Liu, H., Zhang, T., Jiang, Y., Xing, H., Zhang, A.: Discovery of serum metabolites for diagnosis of progression of mild cognitive impairment to Alzheimer’s disease using an optimized metabolomics method. RSC Adv. 6, 3586–3591 (2016)CrossRefGoogle Scholar
  18. 18.
    Quinones, M.P., Kaddurah-Daouk, R.: Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis. 35, 165–176 (2009)CrossRefGoogle Scholar
  19. 19.
    Armitage, E.G., Kotze, H.L., Williams, K.J.: Correlation-Based Network Analysis of Cancer Metabolism: A New Systems Biology Approach in Metabolomics. Springer, New York (2014)CrossRefGoogle Scholar
  20. 20.
    Chu, H., Zhang, A., Han, Y., Lu, S., Kong, L., Han, J., Liu, Z., Sun, H., Wang, X.: Metabolomics approach to explore the effects of Kai-Xin-San on Alzheimer’s disease using UPLC/ESI-Q-TOF mass spectrometry. J. Chromatogr. B 1015–1016, 50–61 (2016)CrossRefGoogle Scholar
  21. 21.
    Kaddurah-Daouk, R., Rozen, S., Matson, W., Han, X., Hulette, C.M., Burke, J.R., Doraiswamy, P.M., Welsh-Bohmer, K.A.: Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimer’s Dement. 7, 309–317 (2011)CrossRefGoogle Scholar
  22. 22.
    Sapkota, S., Tran, T., Huan, T., Lechelt, K., Macdonald, S., Camicioli, R., Li, L., Dixon, R.A.: Metabolomics analyses of Salivary sample discriminate normal aging, mild cognitive impairment and Alzheimer’s disease groups and produce biomarkers predictive of neurocognitive performance. JALZ 11, P654 (2016)Google Scholar
  23. 23.
    Liang, Q., Liu, H., Li, X., Zhang, A.-H.: High-throughput metabolomics analysis discovers salivary biomarkers for predicting mild cognitive impairment and Alzheimer’s disease. RSC Adv. 6, 75499–75504 (2016)CrossRefGoogle Scholar
  24. 24.
    Beckonert, O., Keun, H.C., Ebbels, T.M.D., Bundy, J., Holmes, E., Lindon, J.C., Nicholson, J.K.: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007)CrossRefGoogle Scholar
  25. 25.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995)Google Scholar
  26. 26.
    RStudio Team: RStudio: Integrated Development for R (2015).
  27. 27.
    Boulesteix, A.L., Janitza, S., Kruppa, J., König, I.R.: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2, 493–507 (2012)CrossRefGoogle Scholar
  28. 28.
    Khalilia, M., Chakraborty, S., Popescu, M.: Predicting disease risks from highly imbalanced data using random forest. BMC Med. Inform. Decis. Mak. 11, 51 (2011)CrossRefGoogle Scholar
  29. 29.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    Díaz-Uriarte, R., Alvarez de Andrés, S.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006)CrossRefGoogle Scholar
  31. 31.
    Pudlo, P., Marin, J.-M., Robert, C.P., Cornuet, J.-M., Estoup, A.: ABC model choice via random forests. Mol. Biol. Evol. 32, 28 (2015)Google Scholar
  32. 32.
    Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest? In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 154–168. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Genuer, R., Poggi, J., Tuleau-malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010)CrossRefGoogle Scholar
  34. 34.
    Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2, 18–22 (2002)Google Scholar
  35. 35.
    Breiman, L., Cutler, A.: setting up, using, and understanding random forests V4. 0. University of California, Department of Statistics (2003)Google Scholar
  36. 36.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  37. 37.
    Brand, B., Hadlich, F., Brandt, B., Schauer, N., Graunke, K.L., Langbein, J., Repsilber, D., Ponsuksili, S., Schwerin, M.: Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle. PLoS ONE 10, e0125044 (2015)CrossRefGoogle Scholar
  38. 38.
    Kuehl, F.A., Jacob, T.A., Galey, O.H., Ormond, R.E., Meisinger, M.A.P.: The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J. Am. Oil Chem. Soc. 79, 5577–78 (1957)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Mohammad Nasir Abdullah
    • 1
    Email author
  • Bee Wah Yap
    • 2
  • Yuslina Zakaria
    • 3
  • Abu Bakar Abdul Majeed
    • 3
    • 4
  1. 1.Department of Statistics, Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARATapahMalaysia
  2. 2.Advanced Analytic Engineering Centre, Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Faculty of PharmacyUniversiti Teknologi MARABandar Puncak AlamMalaysia
  4. 4.Brain Degeneration and Therapeutics Group, Pharmaceutical and Life Science Community of ResearchUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations