Interactive Big Data Visualization Model Based on Hot Issues (Online News Articles)

  • Wael M. S. YafoozEmail author
  • Siti Z. Z. Abidin
  • Nasiroh Omar
  • Shadi Hilles
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 652)


Big data is a popular term used to describe a massive volume of data, which is a key component of the current information age. Such data is complex and difficult to understand, and therefore, may be not useful for users in that state. News extraction, aggregation, clustering, news topic detection and tracking, and social network analysis are some of the several attempts that have been made to manage the massive data in social media. Current visualization tools are difficult to adapt to the constant growth of big data, specifically in online news articles. Therefore, this paper proposes Interactive Big Data Visualization Model Based on Hot Issues (IBDVM). IBDVM can be used to visualize hot issues in daily news articles. It is based on textual data clusters in textual databases that improve the performance, accuracy, and quality of big data visualization. This model is useful for online news reader, news agencies, editors, and researchers who involve in textual documents domains.


Big data Visual analytics Interactive visualization Clustering Information extraction 



The authors would like to thank Universiti Teknologi MARA and Ministry of Education, Malaysia (600-RMI/FRGS 5/3(161/2013)) for the financial support.


  1. 1.
    Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The meaningful use of big data: four perspectives–four challenges. ACM SIGMOD Rec. 40(4), 56–60 (2012)CrossRefGoogle Scholar
  2. 2.
    Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47. IEEE (2013)Google Scholar
  3. 3.
    Simon, P.: The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions. John Wiley & Sons, Hoboken (2014)Google Scholar
  4. 4.
    Keim, D.A.: Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans. Vis. Comput. Graph. 6(1), 59–78 (2000)CrossRefGoogle Scholar
  5. 5.
    Keim, D.A., Hao, M.C., Dayal, U., Janetzko, H., Bak, P.: Generalized scatter plots. Inf. Vis. 9(4), 301–311 (2010)CrossRefGoogle Scholar
  6. 6.
    DeBrabant, J., Battle, L., Cetintemel, U., Zdonik, S., Stonebraker, M.: Techniques for visualizing massive data sets. New Engl. Database Summit 2(9) (2013)Google Scholar
  7. 7.
    Artigues, A., Cucchietti, F.M., Tripiana, C., Vicente, D., Calmet, H., Marín, G., Vazquez, M.: Scientific big data visualization: a coupled tools approach. Supercomputing Front. Innovations 1(3), 4–18 (2015)Google Scholar
  8. 8.
    Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. Comput. Graph. Forum 32(3–4), 421–430 (2013). Blackwell Publishing Ltd.CrossRefGoogle Scholar
  9. 9.
    Fisher, D., Popov, I., Drucker, S.: Trust me, I’m partially right: incremental visualization lets analysts explore large datasets faster. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1673–1682. ACM (2012)Google Scholar
  10. 10.
    Gorodov, E.Y.E., Gubarev, V.V.E.: Analytical review of data visualization methods in application to big data. J. Electr. Comput. Eng. 2013, 22 (2013)Google Scholar
  11. 11.
    Wang, L., Wang, G., Alexander, C.A.: Big data and visualization: methods, challenges and technology progress. Digital Technol. 1(1), 33–38 (2015)Google Scholar
  12. 12.
    CartoDB (2016). Accessed 11 July 2016
  13. 13.
    Agrawal, R., Kadadi, A., Dai, X., Andres, F.: Challenges and opportunities with big data visualization. In: Proceedings of the 7th International Conference on Management of Computational and Collective intElligence in Digital EcoSystems, pp. 169–173. ACM (2015)Google Scholar
  14. 14.
    Weave, Institute for Visualization and Perception Research (IVPR) of the University of Massachusetts (2016). Accessed 11 July 2016
  15. 15.
    Gartner, Datawatch, Gartner says Self-Service Data Prep the next Big Disruption in Business Intelligence (2016). Accessed 11 July 2016
  16. 16.
    Alya system, large scale computational mechanics (2016). Accessed 11 July 2016
  17. 17.
    Stephanie Robertson, Tracking down answers to your questions about data scientists. Accessed 11 July 2016
  18. 18.
    ROSS PEREZ, Next Generation Cloud BI: Tableau Server hosted on Amazon EC2. Accessed 23 July 2016
  19. 19.
    Aisch, G.: Doing the line chart right. Accessed 23 July 2016
  20. 20.
    Sanket Nadhani, fusioncharts. Accessed 23 July 2016
  21. 21.
    Yafooz, W.M., Abidin, S.Z., Omar, N.: Challenges and issues on online news management. In: 2011 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 482–487. IEEE (2011)Google Scholar
  22. 22.
    Gao, T., Hullman, J.R., Adar, E., Hecht, B., Diakopoulos, N.: NewsViews: an automated pipeline for creating custom geovisualizations for news. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3005–3014. ACM (2014)Google Scholar
  23. 23.
    Hullman, J., Diakopoulos, N., Adar, E.: Contextifier: automatic generation of annotated stock visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2707–2716. ACM (2013)Google Scholar
  24. 24.
    Ong, Thian-Huat, Chen, Hsinchun, Sung, Wai-ki, Zhu, Bin: Newsmap: a knowledge map for online news. Decis. Support Syst. 39(4), 583–597 (2005)CrossRefGoogle Scholar
  25. 25.
    Robert Kosara, Eagereyes (2016). Accessed 23 July 2016
  26. 26.
    Michael Wolff, Newser (2016). Accessed 10 July 2016
  27. 27.
    NBC News, Spectra (2016). Accessed 10 July 2016
  28. 28.
    Yafooz, W.M., Abidin, S.Z., Omar, N., Halim, R.A.: Dynamic semantic textual document clustering using frequent terms and named entity. In: 2013 IEEE 3rd International Conference on System Engineering and Technology (ICSET), pp. 336–340. IEEE (2013)Google Scholar
  29. 29.
    Yafooz, W.M., Abidin, S.Z., Omar, N., Halim, R.A.: Model for automatic textual data clustering in relational databases schema. In: Herawan, T., et al. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Part I. LNEE, vol. 285, pp. 31–40. Springer, Singapore (2014)CrossRefGoogle Scholar
  30. 30.
    Wilbur, W.J., Sirotkin, K.: The automatic identification of stop words. J. Inf. Sci. 18(1), 45–55 (1992)CrossRefGoogle Scholar
  31. 31.
    Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  32. 32.
    Finkel, J.R., Manning, C.D.: Joint parsing and named entity recognition. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 326–334. Association for Computational Linguistics (2009)Google Scholar
  33. 33.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Wael M. S. Yafooz
    • 1
    • 2
    Email author
  • Siti Z. Z. Abidin
    • 1
    • 2
  • Nasiroh Omar
    • 2
  • Shadi Hilles
    • 3
  1. 1.Advanced Analytics Engineering Center (AAEC)Shah AlamMalaysia
  2. 2.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARAShah AlamMalaysia
  3. 3.Faculty of Computer and Information TechnologyAl Madinah International UniversityShah AlamMalaysia

Personalised recommendations