Multi-script Text Detection and Classification from Natural Scenes

  • Zaidah IbrahimEmail author
  • Zolidah Kasiran
  • Dino Isa
  • Nurbaity Sabri
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 652)


Most of the text detection and script classification approaches from natural scenes only cater for a single script whereas text in natural scenes may come in various scripts. This research proposes a gestalt-based approach for multi-script text detection and classification based on human perception. Human perceptual organization is where humans are able to organize visual input into meaningful information. This approach is based on the figure-ground articulation where we perceive the figure or text as standing in front of the background. Features extracted from wavelet coefficients and MSER is used as input to SVM for text detection and script classification. Experimental results indicate that this approach is competitive with the state of the art text detection and script classification approaches.


Gestalt MSER Script classification SVM Text detection Wavelet coefficients 



The authors thank the Ministry of Education and Universiti Teknologi MARA for sponsoring this research under the National Grant No 600-RMI/FRGS 5/3 (165/2013).


  1. 1.
    Suen, S.Y., Bergler, S., Nobile, N., Waked, B., Nadal, C.P., Bloch, A.: Categorizing document images into script and language classes. In: International Conference on Advances in Pattern Recognition, pp. 297–306 (1998)Google Scholar
  2. 2.
    Zhao, Y., Lu, T., Liao, W.: A Robust color-independent text detecting method from complex videos. In: ICDAR, pp. 374–378 (2011)Google Scholar
  3. 3.
    Pan, Y., Zhu, Y., Sun, J., Naoi, S.: Improving scene text detection by scale-adaptive segmentatin and weighted CRF varification. In: ICDAR, pp. 759–763 (2011)Google Scholar
  4. 4.
    Gomez, L., Karatzas, D.: Multi-script text extraction from natural scenes. In: 12th International Conference on Document Analysis and Recognition, pp. 467–471 (2013)Google Scholar
  5. 5.
    Gomez, L.: Perceptual organization for text extraction in natural scenes. Master Thesis, Computer Vision and Artificial Intelligence (2013)Google Scholar
  6. 6.
    Bouman, K.L., Abdollahian, G., Boutin, M., Delp, E.J.: A low complexity sign detection and text localization method for mobile applications. IEEE Trans. Multimedia 13(5), 922–934 (2011)CrossRefGoogle Scholar
  7. 7.
    Shivakumara, P., Dutta, A., Phan, T.Q., Tan, C.L., Pal, U.: A novel mutual nearest neighbor based symmetry for text frame classification in video. Pattern Recogn. 44, 1671–1683 (2011)CrossRefGoogle Scholar
  8. 8.
    Shivakumara, P., Dutta, A., Tan, C.L., Pal, U.: Multi-oriented scene text detection in video based on wavelet and angle projection boundary growing. Multimedia Tools Appl. 72(1), 515–539 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhou, C., Yuan, J.: Arbitrary-shape object localization using adaptive image grids. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 71–84. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural sceneswith stroke width transform. In: CVPR, pp. 2963–2970 (2010)Google Scholar
  11. 11.
    Huang, X., Ma, H.: Automatic detection and localization of natural scene text in video. In: ICPR, pp. 3216–3219 (2010)Google Scholar
  12. 12.
    Chen, H., Tsai, S.S., Schroth, G., Chen, D.M., Grzeszezuk, R., Girod, B.: Robust text detection in natural images with edge-enhanced maximally stable extremal regions. In: ICIP, pp. 2609–2612 (2011)Google Scholar
  13. 13.
    Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 770–783. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Neumann, L., Matas, J.: Text localization in real-world images using efficiently pruned exhaustive search. In: ICDAR, pp. 687–691 (2011)Google Scholar
  15. 15.
    Ghosh, D., Dube, T., Shivaprasad, A.P.: Script recognition – a review. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2142–2161 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Zhao, K., Song, Y., Guo, J.: Text extraction from natural scene image: a survey. Neurocomputing 122, 310–323 (2013)CrossRefGoogle Scholar
  17. 17.
    Hochberg, J., Kelly, P., Thomas, T., Kerns, L.: Automatic script identification from document images using cluster-based templates. IEEE Trans. Pattern Anal. Mach. Intell. 19(2) (1997)Google Scholar
  18. 18.
    Anthimopoulos, M., Gatos, B., Pratikakis, I.: A two-stage scheme for text detection in video images. Image Vis. Comput. 28, 1413–1426 (2010)CrossRefGoogle Scholar
  19. 19.
    Steinwart, I., Christmann, A.: Support Vector Machine. Springer Science & Business Media, New York (2008)zbMATHGoogle Scholar
  20. 20.
    Shivakumara, P., Phan, T.Q., Tan, C.L.: A robust wavelet transform based technique for video detection. In: ICDAR, pp. 1285–1289 (2009)Google Scholar
  21. 21.
    Zhen, W., Wei, Z.: A comparative study of feature selection for SVM in video text detection. In: Second International Symposium on Computational Intelligence and Design, vol. 2, pp. 552–556 (2009)Google Scholar
  22. 22.
    Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: ICDAR 2003 robust reading competitions: entries, results, and future directions. IJDAR 7(2–3), 105–122 (2005)CrossRefGoogle Scholar
  23. 23.
    Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: Proceedings of the CVPR, pp. 1083–1090 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Zaidah Ibrahim
    • 1
    Email author
  • Zolidah Kasiran
    • 1
  • Dino Isa
    • 2
  • Nurbaity Sabri
    • 3
  1. 1.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Faculty of EngineeringUniversity of Nottingham Malaysia CampusSemenyihMalaysia
  3. 3.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARA Campus JasinMerlimauMalaysia

Personalised recommendations