Advertisement

A Review of Feature Extraction Optimization in SMS Spam Messages Classification

  • Kamahazira ZainalEmail author
  • Mohd Zalisham Jali
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 652)

Abstract

Spam these days has become a definite nuisance to mobile users. Provision of Short Messages Services (SMS) has been intruded, in line with an advancement of mobile technology by the emergence of SMS spam. This issue has not only cause distressing situation but also other serious threats such as money loss, fraud, and false news. The focus of this study is to excavate the features extraction in classifying SMS spam messages at users’ end. Its objective is to study the discriminatory control of the features and considering its informative or influence factor in classifying SMS spam messages. This study has been conducted by gathering research papers and journals from numerous sources on the subject of spam classification. The discovery offers a motivational effort for further execution in a wider perspective of combating spam such as measurement of spam’s risk level.

Keywords

SMS spam Spam classification Spam filtering Spam feature extraction Feature extraction review 

Notes

Acknowledgement

This research is fully funded by the Ministry of Higher Education of Malaysia and Research Management Centre of USIM via grant research with code USIM/FRGS/FST/32/50315.

References

  1. 1.
    Balubaid, M.A., Manzoor, U., Zafar, B., Qureshi, A., Ghani, N.: Ontology based SMS controller for smart phones. Int. J. Adv. Comput. Sci. Appl. 6(1), 133–139 (2015)Google Scholar
  2. 2.
    Sethi, G., Bhootna, V.: SMS spam filtering application using Android. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(3), 4624–4626 (2014)Google Scholar
  3. 3.
    Uysal, A.K., Gunal, S., Ergin, S., Gunal, E.S.: The impact of feature extraction and selection on SMS spam filtering. IEEE 19(5), 67–72 (2013)Google Scholar
  4. 4.
    Gudkova, D.: Kaspersky Security Bulletin-Spam Evolution 2013 (2013)Google Scholar
  5. 5.
    Gohring, N.: Handful of Spam. Newsfront (2001)Google Scholar
  6. 6.
    SophosLabs: Android: Today’s biggest target. Sophos Security Threat report 2013 (2013)Google Scholar
  7. 7.
    Yeboah-Boateng, E.O., Amanor, P.M.: Phishing, SMiShing & Vishing: an assessment of threats against mobile devices. J. Emerg. Trends Comput. Inf. Sci. 5(4), 297–307 (2014)Google Scholar
  8. 8.
    Hidalgo, J.M.G., Bringas, G.C., Sánz, E.P.: Content based SMS spam filtering (2003)Google Scholar
  9. 9.
    Narayan, A., Saxena, P.: The curse of 140 characters: evaluating the efficacy of SMS spam detection on Android. ACM (2013)Google Scholar
  10. 10.
    Vural, I., Venter, H.S.: Combating mobile spam through Botnet detection using artificial immune systems. J. Univ. Comput. Sci. 18(6), 750–774 (2012)Google Scholar
  11. 11.
    Mosquera, A., Aouad, L., Grzonkowski, S., Morss, D.: On detecting messaging abuse in short text messages using linguistic and behavioral patterns. Arxiv - Social Media Intelligence (2014). http://arxiv.org/abs/1408.3934
  12. 12.
    Cormack, G.V., Gómez Hidalgo, J.M., Sánz, E.P.: Spam filtering for short messages. In: Proceedings of the 16th ACM - Conference on Information and Knowledge Management - CIKM 2007 (2007). doi: 10.1145/1321440.1321486
  13. 13.
    Xia, H., Fu, Y., Zhou, J.: Intelligent spam filtering for massive short message stream. Int. J. Comput. Math. Electr. Electron. Eng. 32(2), 586–596 (2013). doi: 10.1108/03321641311296963 CrossRefGoogle Scholar
  14. 14.
    Song, G., Ye, Y., Du, X., Huang, X., Bie, S.: Short text classification: a survey. J. Multimedia 9(5), 635–643 (2014). doi: 10.4304/jmm.9.5 CrossRefGoogle Scholar
  15. 15.
    Cormack, G.V, Hidalgo, J.M.G., Sánz, E.P.: Feature engineering for mobile (SMS) spam filtering. In: SIGIR, pp. 1–2 (2007)Google Scholar
  16. 16.
    Zainal, K., Zalisham, M.: A perception model of spam risk assessment inspired by danger theory of artificial immune systems. In: International Conference on Computer Science and Computational Intelligence (ICCSCI), vol. 59, pp. 152–161 (2015). doi: 10.1016/j.procs.2015.07.530 Google Scholar
  17. 17.
    Sapronov, K.: The human factor and information security. Securelist (2005)Google Scholar
  18. 18.
    Emm, D.: Patching human vulnerabilities. Securelist (2010)Google Scholar
  19. 19.
    Farrell, N.: China arrests mobile spammers (2014)Google Scholar
  20. 20.
    Ricknas, M.: UK mobile operators join forces to combat text spam (2014)Google Scholar
  21. 21.
    Delany, S.J., Buckley, M., Greene, D.: SMS spam filtering: methods and data. Expert Syst. Appl. 39(10), 9899–9908 (2012). ElsevierCrossRefGoogle Scholar
  22. 22.
    Zalpuri, N., Arora, M.: An efficient model for S.M.S security and SPAM detection: a review. Int. J. Comput. Sci. Eng. (IJCSE) 3(12), 1–6 (2015)Google Scholar
  23. 23.
    Nuruzzaman, M.T., Lee, C., Choi, D.: Independent and personal SMS spam filtering. In: IEEE International Conference on Computer and Information Technology, pp. 429–435 (2011). doi: 10.1109/CIT.2011.23
  24. 24.
    Nikiforakis, N., Maggi, F., Stringhini, G., Rafique, M.Z.: Stranger danger: exploring the ecosystem of Ad-based URL shortening services. ACM, April 2014. doi: 10.1145/2566486.2567983
  25. 25.
    Almeida, T.A., Gomez, J.M., Yamakami, A.: Contributions to the study of SMS spam filtering: new collection and results. ACM (2011)Google Scholar
  26. 26.
    Xu, Q., Xiang, E.W., Yang, Q., Du, J., Zhong, J.: SMS spam detection using noncontent features. IEEE Intell. Syst. 27(6), 44–51 (2012)CrossRefGoogle Scholar
  27. 27.
    Belém, D., Duarte-Figuriredo, F.: Content filtering for SMS systems based on Bayesian classifier and word grouping. IEEE (2011)Google Scholar
  28. 28.
    Mathew, K., Issac, B.: Intelligent spam classification for mobile text message. In: International Conference on Computer Science and Network Technology, pp. 101–105 (2011)Google Scholar
  29. 29.
    Zainal, K., Sulaiman, N.F., Jali, M.Z.: An analysis of various algorithms for text spam classification and clustering using RapidMiner and Weka. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 13(3), 66–74 (2015). http://sites.google.com/site/ijcsis/ Google Scholar
  30. 30.
    Almeida, T.A., María, J., Hidalgo, G., Silva, T.P.: Towards SMS spam filtering: results under a new dataset. Int. J. Inf. Secur. Sci. 2(1), 1–18 (2012)Google Scholar
  31. 31.
    Warade, S.J., Tijare, P.A., Sawalkar, S.N.: An approach for SMS spam detection. Int. J. Res. Advent Technol. 2(12), 8–11 (2014)Google Scholar
  32. 32.
    Al-Hassan, A.A., EL-Alfy, E.-S.M.: Dendritic cell algorithm for mobile phone spam filtering. In: International Conference on Ambient Systems, Networks and Technologies (ANT), vol. 52, pp. 244–251 (2015)Google Scholar
  33. 33.
    Tan, H., Goharian, N., Sherr, M.: $100,000 Prize Jackpot. Call Now! Identifying the pertinent features of SMS spam. In: SIGIR, pp. 1–2 (2012)Google Scholar
  34. 34.
    Sulaiman, N.F., Jali, M.Z.: A new SMS spam detection method using both content-based and non content-based features. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Computer and Communication Engineering Technology, LNEE, vol. 362, pp. 505–514. Springer, Switzerland (2015)Google Scholar
  35. 35.
    Mujtaba, G., Yasin, M.: SMS spam detection using simple message content features. J. Basic Appl. Sci. Res. 4(4), 275–279 (2014)Google Scholar
  36. 36.
    Karami, A., Zhou, L.: Exploiting latent content based features for the detection of static SMS spams. In: Proceedings of the American Society for Information Science and Technology, March 2014. doi: 10.1002/meet.2014.14505101157 Google Scholar
  37. 37.
    Karami, A., Zhou, L.: Improving static SMS spam detection by using new content-based features. In: 20th Americas Conference on Information Systems, pp. 1–9 (2014)Google Scholar
  38. 38.
    Mahmoud, T.M., Mahfouz, A.M.: SMS spam filtering technique based on artificial immune system. Int. J. Comput. Sci. Issues (IJCSI) 9(2), 589–597 (2012)Google Scholar
  39. 39.
    Khemapatapan, C.: Thai-English spam SMS filtering. In: IEEE - Asia Pacific Conference on Communications (APCC), pp. 226–230 (2010)Google Scholar
  40. 40.
    Rafique, M.Z.: Graph-based learning model for detection of SMS spam on smart phones. IEEE 53(9), 1689–1699 (2012). doi: 10.1017/CBO9781107415324.004 Google Scholar
  41. 41.
    Yadav, K., Kumaraguru, P., Goyal, A., Gupta, A., Naik, V.: SMSAssassin: crowdsourcing driven mobile-based system for SMS spam filtering. In: Proceedings of the 12th ACM Workshop on Mobile Computing Systems and Applications - HotMobile, USA, pp. 1–6 (2011). doi: 10.1145/2184489.2184491
  42. 42.
    Yadav, K., Saha, S.K., Kumaraguru, P., Kumra, R.: Take control of your SMSes: designing an usable spam SMS filtering system. In: IEEE International Conference on Mobile Data Management, pp. 352–355 (2012). doi: 10.1109/MDM.2012.54
  43. 43.
    Uysal, A.K., Gunal, S., Ergin, S., Gunal, E.S.: A novel framework for SMS spam filtering. IEEE (2012)Google Scholar
  44. 44.
    Yoon, J.W., Kim, H., Huh, J.H.: Hybrid spam filtering for mobile communication. Comput. Secur. 29(4), 446–459 (2010). doi: 10.1016/j.cose.2009.11.003 CrossRefGoogle Scholar
  45. 45.
    Cao, L., Nie, G.H., Liu, P.F.: Ontology-based spam detection filtering system. IEEE, pp. 282–284 (2011)Google Scholar
  46. 46.
    Junaid, M.B., Farooq, M.: Using evolutionary learning classifiers to do mobile spam (SMS) filtering. In: GECCO, pp. 1795–1801 (2011)Google Scholar
  47. 47.
    Rafique, M.Z., Alrayes, N., Khan, M.K.: Application of evolutionary algorithms in detecting SMS spam at access layer. In: GECCO-2011: Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, pp. 1787–1794 (2011). doi: 10.1145/2001576.2001816
  48. 48.
    Androulidakis, I., Stefan, M.P.S.J., Vlachos, V., Papanikolaou, A.: Spam goes mobile: filtering unsolicited SMS traffic. In: 2012 20th Telecommunications Forum, TELFOR 2012 - Proceedings, vol. 7, pp. 1452–1455 (2012). doi: 10.1109/TELFOR.2012.6419492
  49. 49.
    Iyer, K.B.P., Shanthi, V.: Privacy preferences for Geo-Calendar based SMS using intelligent text configurator. Int. J. Comput. Commun. Eng. 2(1), 82–85 (2013)CrossRefGoogle Scholar
  50. 50.
    Rafique, M.Z., Farooq, M.: SMS spam detection by operating on byte-level distributions using Hidden Markov Models (HMMS). In: Virus Bulletin Conference, pp. 1–7 (2010)Google Scholar
  51. 51.
    El-Alfy, E.-S.M., Alhasan, A.A.: Spam filtering framework for multimodal mobile communication based on dendritic cell algorithm. In: Future Generation Computer Systems. Elsevier B.V (2016). doi: 10.1016/j.future.2016.02.018 Google Scholar
  52. 52.
    Zhang, J., Li, X., Xu, W., Li, C.: Filtering algorithm of spam short messages based on artificial immune system. IEEE, pp. 195–198 (2011)Google Scholar
  53. 53.
    Zhang, H., Wang, W.: Application of Bayesian method to spam SMS filtering. IEEE, pp. 1–3 (2009)Google Scholar
  54. 54.
    Shirali-Shahreza, M.H., Shirali-Shahreza, M.: An anti-SMS-spam using CAPTCHA. In: International Colloquium on Computing, Communication, Control and Management, pp. 318–321 (2008). doi: 10.1109/CCCM.2008.247
  55. 55.
    Zhao, Y., Zhang, Z., Wang, Y., Liu, J.: Robust mobile spamming detection via graph patterns. In: 21st International Conference on Pattern Recognition (ICPR 2012), pp. 983–986 (2012)Google Scholar
  56. 56.
    Oda, T.: A Spam-Detecting Artificial Immune System (2005)Google Scholar
  57. 57.
    Almeida, T.A., Hidalgo, J.M.G.: UCI Machine Learning Repository (2012). http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection#
  58. 58.
    Sulaiman, N.F., Jali, M.Z.: Integrated mobile spam model using artificial immune system algorithms. In: Knowledge Management International Conference (KMICe) (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Faculty of Science and Technology (FST)Universiti Sains Islam Malaysia (USIM)NilaiMalaysia

Personalised recommendations