Skip to main content

Introduction and Fundamentals of Pinhole Scintigraphy

  • Chapter
  • First Online:
Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases

Abstract

To those who acquired their anatomical knowledge of the skeleton with the aid of clean, dried bone specimens or a plastic mannequin, it may appear as a mere inert weight-bearing scaffold of the human body. However, like all other organs, the bone constantly undergoes remodeling and tubulation through the physiological and metabolic activities of osteoblasts and osteoclasts. The principal role played by these bone cells is the maintenance of bone integrity and calcium homeostasis by balancing between the ratio of bone collagen production and resorption and by governing mineralization processes. Collagen production is a histological property common to various connective tissues, but mineralization is unique to bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Sasaki M, Kuwabara Y et al (2005) Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med 19:573–579

    Article  PubMed  Google Scholar 

  • Alazraki N (1988) Radionuclide techniques. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 2nd edn. WB Saunders, Philadelphia

    Google Scholar 

  • Anger HO, Rosenthall DJ (1959) Scintillation camera and positron camera. In: Medical radioisotope scanning. IAEA, Vienna

    Google Scholar 

  • Bahk YW (1982) Usefulness of pinhole scintigraphy in bone and joint diseases (abstract). Jpn J Nucl Med 29:1307–1308

    Google Scholar 

  • Bahk YW (1985) Usefulness of pinhole collimator scintigraphy in the study of bone and joint diseases (abstract). European nuclear medicine congress, London, p 262

    Google Scholar 

  • Bahk YW (1988) Pinhole scintigraphy as applied to bone and joint studies. In: Proceedings of fourth Asia and Oceania congress of nuclear medicine and biology, Taipei, pp 93–95

    Google Scholar 

  • Bahk YW (1992) Scintigraphic and radiographic imaging of inflammatory bone and joint diseases. In: Pre-congress teaching course of fifth Asia and Oceania congress of nuclear medicine and biology, Jakarta, pp 19–35

    Google Scholar 

  • Bahk YW, Kim OH, Chung SK (1987) Pinhole collimator scintigraphy in differential diagnosis of metastasis, fracture, and infections of the spine. J Nucl Med 28:447–451

    CAS  PubMed  Google Scholar 

  • Bahk YW, Chung SK, Kim SH et al (1992) Pinhole scintigraphic manifestations of sternocostoclavicular hyperostosis: report of a case. Korean J Nucl Med 26:155–159

    Google Scholar 

  • Bahk YW, Park YH, Chung SK et al (1994) Pinhole scintigraphic sign of chondromalacia patellae in older subjects: a prospective assessment with differential diagnosis. J Nucl Med 35:855–862

    CAS  PubMed  Google Scholar 

  • Bahk YW, Park YH, Chung SK et al (1995) Bone pathologic correlation of multimodality imaging of Paget’s disease. J Nucl Med 36:1421–1426

    CAS  PubMed  Google Scholar 

  • Bahk YW, Kim SH, Chung SK et al (1998a) Dual-head pinhole bone scintigraphy. J Nucl Med 39:1444–1448

    CAS  PubMed  Google Scholar 

  • Bahk YW, Chung SK, Park YH et al (1998b) Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 39:130–139

    CAS  PubMed  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    CAS  PubMed  Google Scholar 

  • Blum T (1924) Osteomyelitis of the mandible and max illa. Am J Dent Assoc 11:802–805

    Google Scholar 

  • Buck AK, Glatting G, Reske SN (2004) Quantification of 18F-FDG uptake in non-small cell lung cancer: a feasible prognostic marker? J Nucl Med 45:1274–1276

    CAS  PubMed  Google Scholar 

  • Castronovo FP, Callahan RJ (1972) New bone scanning agent: 99mTc-labelled 1-hydroxy-ethyledene-1,1-sodium phosphate. J Nucl Med 13:823–827

    CAS  PubMed  Google Scholar 

  • Charkes ND (1969) Some differences between bone scans made with 87mSr and 85Sr. J Nucl Med 10:491–494

    CAS  PubMed  Google Scholar 

  • Citrin DL, Bessent RG, Tuohy JB et al (1975) A comparison of phosphate bone-scanning agents in normal subjects and patients with malignant disease. Br J Radiol 48:118–121

    Article  CAS  PubMed  Google Scholar 

  • Conway JJ (1993) A scintigraphic classification of Legg-Calvé-Perthes disease. Semin Nucl Med 33:274–295

    Article  Google Scholar 

  • Corey KR, Kenney O, Greenberg E et al (1961) The use of calcium-47 in diagnostic studies of patients with bone lesions. AJR Am J Roentgenol 85:955–975

    CAS  Google Scholar 

  • Danigelis JA, Fisher RL, Ozonoff MB et al (1975) 99mTc-polyphosphate bone imaging in Legg-Perthes disease. Radiology 115:407–413

    Article  CAS  PubMed  Google Scholar 

  • Davis MA, Jones AG (1976) Comparison of 99mTc labeled phosphate and phosphonate agents for skeletal imaging. Semin Nucl Med 6:19–31

    Article  CAS  PubMed  Google Scholar 

  • Fleming WH, McIlraith ID, King R (1961) Photoscanning of bone lesions utilizing strontium 85. Radiology 77:635–636

    Article  CAS  PubMed  Google Scholar 

  • Fogelman I, McKillop JH, Citrin DL (1977) A clinical comparison of 99mTc-hydroxyethylidene diphosphonate (HEDP) and 99mTc-pyrophosphate in the detection of bone metastases. Clin Nucl Med 2:364–367

    Article  Google Scholar 

  • Francis MD, Ferguson DL, Tofe AJ et al (1980) Comparative evaluation of three diphosphonates: in vivo adsorption (C-14 labeled) and in vivo osteogenic uptake (Tc-99 m complexed). J Nucl Med 21:1185–1189

    CAS  PubMed  Google Scholar 

  • Francis MD, Horn PA, Tofe AJ (1981) Controversial mechanism of technetium-99 m deposition on bone (abstract). J Nucl Med 22:72

    Google Scholar 

  • Guillermart A, Le Page A, Galy YG et al (1980) Bone kinetics of calcium-45 and pyrophosphate labeled with technetium 96. An autoradiographic evaluation. J Nucl Med 21:466–470

    Google Scholar 

  • Gynning I, Langeland P, Lindberg S et al (1961) Localization with Sr-85 of spinal metastases in mammary cancer and changes in uptake after hormone and roentgen therapy. Acta Radiol 55:119–128

    Article  CAS  PubMed  Google Scholar 

  • Harper PV, Lathrop KA, Jiminez F et al (1965) Technetium 99 m as a scan agent. Radiology 85:101–109

    Article  CAS  PubMed  Google Scholar 

  • Hoffman FL (1925) Radium (mesothorium) necrosis. JAMA 85:961–965

    Article  Google Scholar 

  • Jones AG, Francis MD, Davis MA (1976) Bone scanning: radionuclide reaction mechanisms. Semin Nucl Med 6:3–18

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Chung SK, Park YH et al (1992) Pinhole bone scan appearance of osteoid osteoma. Korean J Nucl Med 26:160–163

    Google Scholar 

  • Kim SH, Chung SK, Bahk YW (1993) Photopenic metastases with septation from papillary thyroid carcinoma: a case report. Korean J Nucl Med 26:305–308

    Google Scholar 

  • Kim SH, Chung SK, Bahk YW et al (1999) Whole-body and pinhole bone scintigraphic manifestations of Reiter’s syndrome: distribution patterns and early and characteristic signs. Eur J Nucl Med 26:163–170

    Article  CAS  PubMed  Google Scholar 

  • Lilien DL, Berger HG, Anderson DP, Bennett LR (1973) 111In-chloride: a new agent for bone marrow imaging. J Nucl Med 14:184–186

    CAS  PubMed  Google Scholar 

  • Mallinckrodt (1996) TechneScan HDP kit for the preparation of technetium Tc-99 m oxidronate. Mallinckrodt, St. Louis. http://imaging.mallinckrodt.com/_attachments/packageinserts/pin091.doc

    Google Scholar 

  • Martland HS (1926) Microscopic changes of certain anemias due to radioactivity. Arch Pathol Lad Med 2:465–472

    CAS  Google Scholar 

  • O’Conner MK, Brown ML, Hung JC et al (1991) The art of bone scintigraphy—technical aspects. J Nucl Med 32:2332–2341

    Google Scholar 

  • Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal systems. In: Perk WA (ed) Bone and mineral research. Elsevier, Amsterdam

    Google Scholar 

  • Pitt WR, Sharp PF (1985) Comparison of quantitative and visual detection of new focal bone lesions. J Nucl Med 26:230–236

    CAS  PubMed  Google Scholar 

  • Richards P (1960) A survey of the production at Brookhaven National Laboratory of radioisotopes for medical research. In: Congresso Nucleare, vol. 2. Comitato Nazionale Ricerche Nucleari, Rome

    Google Scholar 

  • Rosenthall L, Kaye M (1975) Technetium-99 m-pyrophosphate kinetics and imaging in metabolic bone disease. J Nucl Med 16(1):33–39

    CAS  PubMed  Google Scholar 

  • Silberstein EB, McAfee JG (1984) Bone localization. In: Differential diagnosis in nuclear medicine. McGraw-Hill, New York

    Google Scholar 

  • Silberstein EB, Francis MD, Tofe AJ et al (1975) Distribution of 99mTc-Sn-diphosphaonate and free 99mTc-pertechnetate in selected soft and hard tissues. J Nucl Med 16:58–61

    CAS  PubMed  Google Scholar 

  • Subramanian G, McAfee JG (1971) A new complex of 99mTc for skeletal imaging. Radiology 99:192–196

    Article  CAS  PubMed  Google Scholar 

  • Subramanian G, McAfee JG, Bell EG et al (1972) 99mTc-labeled polyphosphate as a skeletal imaging agent. Radiology 102:701–704

    Article  CAS  PubMed  Google Scholar 

  • Subramanian G, JG MA, Blair RJ et al (1975) Technetium-99 m-methylene diphosphate—a superior agent for skeletal imaging: comparison with other technetium complexes. J Nucl Med 16:744–755

    CAS  PubMed  Google Scholar 

  • Treadwell A d G, Low-Beer BV, Friedell HL, Lawrence GH (1942) Metabolic studies on neoplasm of bone with the aid of radioactive strontium. Am J Med Sci 204:521–530

    Article  Google Scholar 

  • Treves ST, Connolly LP, Kirkpatrick AB et al (1995) Bone. In: Treves ST (ed) Pediatric nuclear medicine, 2nd edn. Springer, New York

    Chapter  Google Scholar 

  • Yang WJ, Bahk YW, Chung SK et al (1994) Pinhole skeletal scintigraphic manifestations of Tietze’s disease. Eur J Nucl Med 21:947–952

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Whee Bahk MD, PhD, FACS .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bahk, YW. (2017). Introduction and Fundamentals of Pinhole Scintigraphy. In: Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-2759-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2759-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2758-1

  • Online ISBN: 978-981-10-2759-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics