Skip to main content

Detection of Catenary Support System

  • Chapter
  • First Online:
Detection and Estimation Research of High-speed Railway Catenary

Part of the book series: Advances in High-speed Rail Technology ((ADVHIGHSPEED))

  • 675 Accesses

Abstract

.As an important part of the traction power supply system, the working state of catenary system is crucial to the train’s safe operation in high-speed railway. Since the complex mechanical and electrical interaction exists between pantograph and catenary system, the failure rate of catenary system is always high. Therefore, it is very necessary to detect and monitor the working state of the catenary fittings and eliminate the safety-threatening conditions in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Technical requirements of high-speed railway power supply safety detection and monitor system. Railway Transportation (2012) No. 136. Railway Ministry of China, Beijing

    Google Scholar 

  2. Yang H, Liu Z, Han Z et al (2013) Foreign body detection between insulator pieces in electrified railway. J China Railw Soc 35(4):30–36

    Google Scholar 

  3. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theor 8:179–187

    MATH  Google Scholar 

  4. Petrou M, Kadyrov A (2004) Affine invariant features from the trace transform. IEEE Trans Pattern Anal Mach Intell 26(1):30–44

    Article  Google Scholar 

  5. Rahtu E, Salo M, Heikkila J (2005) Affine invariant pattern recognition using multiscale autoconvolution. IEEE Trans Pattern Anal Mach Intell 27(6):908–918

    Article  Google Scholar 

  6. Zhou X, Ren X, Zhang G et al (2002) Template update method in target affine tracking. J Image Graphics 7(11):1171–1175

    Google Scholar 

  7. Zhang G, Liu Z, Han Y et al (2013) A fast fuzzy matching method of fault detection for rod insulators of high-speed railways. J China Railw Soc 35(5):27–33

    MathSciNet  Google Scholar 

  8. Cao J, Jie M, Hua T et al (2004) A fast correlation method for image matching using pixels abstract. J Astronaut 25(2):173–178

    Google Scholar 

  9. Li W, Salari E (1995) Successive elimination algorithm for motion estimation. IEEE Trans Image Process 4(1):105–107

    Article  Google Scholar 

  10. Xie W, Zhou Y, Kou R (2011) An improved fast normalized cross correlation algorithm. J Tongji Univ 39(8):1233–1237

    Google Scholar 

  11. Zhang G, Liu Z (2014) Fault detection of catenary insulator damage/foreign material based on corner matching and spectral clustering. Chin J Scientific Instrum 35(6):1370–1377

    Google Scholar 

  12. Barnea DI, Silverman HF (1972) A class of algorithms for fast digital image registration. IEEE Trans Comput 21(2):179–186

    Article  MATH  Google Scholar 

  13. Wu PJ, Chen GM (2005) An improved SSDA in image registration. Comput Eng Appl 41(33):76–78

    Google Scholar 

  14. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  15. Guo X, Liu Z, Zhang G (2015) Fault detection of catenary insulator based on corner matching and image differencing. Proc CSU-EPSA 27(2):8–14

    Google Scholar 

  16. Song H, Jiang X, Yang G et al (2007) Application of moving average filter in weak pulse signal detection. Comput Digital Eng 35(10):169–170

    Google Scholar 

  17. Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theor 38(2):617–643

    Article  MathSciNet  MATH  Google Scholar 

  18. Lun DP, Tai-chiu H, Ho Y (2002) Wavelet singularity detection for image processing. IEEE Circ Syst 45(2):156–159

    Google Scholar 

  19. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277

    Article  MATH  Google Scholar 

  20. Chen G (2008) An improved hybrid model for medical image segmentation. In: Proceedings of 11th IEEE Singapore international conference on communication systems, Singapore, pp 367–370

    Google Scholar 

  21. Zhang G, Liu Z, Han Y (2016) Automatic recognition for catenary insulators of high-speed railway based on contourlet transform and Chan-Vese model. Optik 127:215–221

    Article  Google Scholar 

  22. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  23. Tang J, Peli E, Action S (2003) Image enhancement using a contrast measure in the compressed domain. IEEE Signal Process Lett 10(10):289–292

    Article  Google Scholar 

  24. Serra J (1986) Introduction to mathematical morphology. Comput Vis Graphics Image Proc 35(3):283–305

    Article  MATH  Google Scholar 

  25. Yan X, Lei T (2009) Research of traffic lane detection algorithm based on morphology method. J China Railw Soc 31(1):107–110

    Google Scholar 

  26. Han Z, Liu Z, Yang H et al (2013) Insulator fault detection based on curvelet coefficients morphology and zonal energy method. J China Railw Soc 35(3):36–40

    Google Scholar 

  27. Li D (2011) The influence of catenary system on high speed railway traffic safety. Chin Railw 2:34–37

    Google Scholar 

  28. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE international conference on computer vision, Kerkyra, Greece, pp 1150–1157

    Google Scholar 

  29. Lowe DG (2004) Distinctive image features from scale-invariant key points. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  30. Cheung W, Hamarneh G (2009) SIFT: dimensional scale invariant feature transform. IEEE Trans Image Process 18(9):2012–2021

    Article  MathSciNet  Google Scholar 

  31. Li C, Ma L (2009) A new framework for feature descriptor based on SIFT. Pattern Recogn Lett 30(5):544–557

    Article  Google Scholar 

  32. Battiato S, Gallo G, Puglisi G et al (2007) SIFT features tracking for video stabilization. In: International conference on image analysis and processing, IEEE, 825–830

    Google Scholar 

  33. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm ACM 24:381–395

    Google Scholar 

  34. Han Y, Liu Z, Han Z et al (2014) Fracture detection of ear pieces of catenary support devices of high-speed railway based on SIFT feature matching. J China Railw Soc 36(2):31–36

    Google Scholar 

  35. Bay H, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. Comput Vis Image Underst 110(3):404–417

    Google Scholar 

  36. Juan L, Gwun O (2009) A comparison of SIFT, PCA-SIFT and SURF. Int J Image Proc 3(4):143–152

    Google Scholar 

  37. Yang H, Liu Z, Han Y et al (2013) Defective condition detection of insulators in electrified railway based on feature matching of speeded-up robust features. Power Syst Technol 37(8):2297–2302

    Google Scholar 

  38. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 886–893

    Google Scholar 

  39. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition vol 1, pp I-511–I-518

    Google Scholar 

  40. Han Y, Liu Z, Geng X et al (2016) Fracture detection of ear pieces in catenary support devices of high-speed railway based on HOG features. J China Railw Soc (in press)

    Google Scholar 

  41. Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput Vis Graphics Image Proc 43(2):765–768

    Google Scholar 

  42. Lee TS (1996) Image representation using 2D Gabor wavelet. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  43. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  44. Yang H, Liu Z (2016) Defective condition detection of rotary double ears of support device in electrified railway based on the 2nd generation curvelet transform. J China Railw Soc (in press)

    Google Scholar 

  45. Zhong J, Liu Z, Zhang G et al (2016) Condition detection of swivel clevis pins in overhead contact system of high-speed railway. J China Railw Soc (in press)

    Google Scholar 

  46. Shai A (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  47. Chen J, Liu Z, Han Y (2016) Location and fault detection of diagonal tube in high-speed railway overhead contact system based on local feature description. J China Railw Soc (in press)

    Google Scholar 

  48. Han Z, Liu Z, Zhang G, Yang H (2013) Overview of non-contact image detection technology for the pantograph-catenary monitoring. J China Railw 35(6):40–47

    Google Scholar 

  49. Liu Z, Song Y, Han Y et al (2016) Advances of research on high-speed railway catenary. J Southwest Jiaotong Univ 51(3):495–518

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Liu, Z. (2017). Detection of Catenary Support System. In: Detection and Estimation Research of High-speed Railway Catenary. Advances in High-speed Rail Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2753-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2753-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2752-9

  • Online ISBN: 978-981-10-2753-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics