Skip to main content

Peripheral Blood Mononuclear Cells for Limb Ischemia

  • Chapter
  • First Online:
Therapeutic Angiogenesis
  • 414 Accesses

Abstract

There is accumulating evidence that the peripheral blood is a source of pro-angiogenic mononuclear cells (MNCs). These cells were initially described as endothelial progenitor cells (EPCs) expressing CD34 and vascular endothelial growth factor (VEGF) receptor 2. Pro-angiogenic MNCs are now known to represent a mixed population of cells, including hematopoietic stem cells, mesenchymal stem cells, and EPCs. The therapeutic potential of bone marrow or peripheral blood MNCs has been tested in patients with severe peripheral artery disease, showing that implanted cells promote the production of pro-angiogenic molecules in an autocrine and/or paracrine fashion and contribute to the recovery of blood flow in ischemic limbs. The molecular mechanisms underlying therapeutic angiogenesis are yet to be defined, but a number of studies have indicated that injection of either bone marrow or peripheral blood MNCs improves the clinical outcome in patients with severe limb ischemia and importantly achieves this effect with minor adverse events. In addition to controlling classical risk factors such as diabetes and/or hypertension, recent studies have suggested several combination therapies that can contribute to improving the therapeutic effects of these pro-angiogenic cells. Therapeutic angiogenesis promoted by the injection of autologous peripheral blood MNCs is an essential and practical treatment for patients who have no other options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusumanto YH, Van Weel V, Mulder NH, Smit AJ, Van den Dungen JJAM, Hooymans JMM, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17(6):683–91. doi:10.1089/Hum.2006.17.683.

    Article  CAS  PubMed  Google Scholar 

  2. Muona K, Makinen K, Hedman M, Manninen H, Yla-Herttuala S. 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene Ther. 2012;19(4):392–5. doi:10.1038/gt.2011.109.

    Article  CAS  PubMed  Google Scholar 

  3. Rajagopalan S, Mohler III ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–8. doi:10.1161/01.CIR.0000093398.16124.29.

    Article  CAS  PubMed  Google Scholar 

  4. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–23.

    Article  CAS  PubMed  Google Scholar 

  5. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–302. doi:10.1161/CIRCRESAHA.113.300565.

    Article  CAS  PubMed  Google Scholar 

  6. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359(9323):2053–8.

    Article  CAS  PubMed  Google Scholar 

  7. Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011;377(9781):1929–37. doi:10.1016/S0140-6736(11)60394-2.

    Article  CAS  PubMed  Google Scholar 

  8. Creager MA, Olin JW, Belch JJF, Moneta GL, Henry TD, Rajagopalan S, et al. Effect of hypoxia-inducible factor-1 alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124(16):1765–U148. doi:10.1161/Circulationaha.110.009407.

    Article  CAS  PubMed  Google Scholar 

  9. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35. doi:10.1016/S0140-6736(02)09670-8.

    Article  PubMed  Google Scholar 

  10. Huang PP, FengYang X, Li SZ, ChaoWen J, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98(6):1335–42. doi:10.1160/TH07-02-0137.

    CAS  PubMed  Google Scholar 

  11. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24(2):287–94. doi:10.1016/j.avsg.2009.10.012.

    Article  CAS  PubMed  Google Scholar 

  12. Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60. doi:10.2337/Diacare.28.9.2155.

    Article  PubMed  Google Scholar 

  13. Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia angiogenic and cell therapies. Circ Res. 2015;116(9):1561–78. doi:10.1161/CIRCRESAHA.115.303565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim SW, Kim H, Cho HJ, Lee JU, Levit R, Yoon YS. Human peripheral blood-derived CD31+ cells have robust angiogenic and vasculogenic properties and are effective for treating ischemic vascular disease. J Am Coll Cardiol. 2010;56(7):593–607. doi:10.1016/j.jacc.2010.01.070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tateno K, Minamino T, Toko H, Akazawa H, Shimizu N, Takeda S, et al. Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ Res. 2006;98(9):1194–202. doi:10.1161/01.RES.0000219901.13974.15.

    Article  CAS  PubMed  Google Scholar 

  16. Chang MC, Tsao CH, Huang WH, Chen PCH, Hung SC. Conditioned medium derived from mesenchymal stem cells overexpressing HPV16 E6E7 dramatically improves ischemic limb. J Mol Cell Cardiol. 2014;72:339–49. doi:10.1016/j.yjmcc.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  17. Kamata Y, Takahashi Y, Iwamoto M, Matsui K, Murakami Y, Muroi K, et al. Local implantation of autologous mononuclear cells from bone marrow and peripheral blood for treatment of ischaemic digits in patients with connective tissue diseases. Rheumatology. 2007;46(5):882–4. doi:10.1093/rheumatology/ke1436.

    Article  CAS  PubMed  Google Scholar 

  18. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H, et al. G-Csf-mobilized peripheral-blood progenitor cells for allogeneic transplantation - safety, kinetics of mobilization, and composition of the graft. Br J Haematol. 1994;87(3):609–13. doi:10.1111/J.1365-2141.1994.Tb08321.X.

    Article  CAS  PubMed  Google Scholar 

  21. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24(2):288–93. doi:10.1161/01.ATV.0000114236.77009.06.

    Article  CAS  PubMed  Google Scholar 

  22. Smadja DM, Bieche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, et al. Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol. 2008;28(12):2137–43. doi:10.1161/ATVBAHA.108.168815.

    Article  CAS  PubMed  Google Scholar 

  23. Ishida A, Ohya Y, Sakuda H, Ohshiro K, Higashiuesato Y, Nakaema M, et al. Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia. Circulation. 2005;69(10):1260–5. doi:10.1253/Circj.69.1260.

    Article  Google Scholar 

  24. Ozturk A, Kucukardali Y, Tangi F, Erikci A, Uzun G, Bashekim C, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complicat. 2012;26(1):29–33. doi:10.1016/j.jdiacomp.2011.11.007.

    Article  PubMed  Google Scholar 

  25. Mohammadzadeh L, Samedanifard SH, Keshavarzi A, Alimoghaddam K, Larijani B, Ghavamzadeh A, et al. Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diabetes. 2013;121(1):48–53. doi:10.1055/s-0032-1311646.

    Article  CAS  PubMed  Google Scholar 

  26. Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J. 2005;26(18):1903–9. doi:10.1093/eurheartj/ehi285.

    Article  PubMed  Google Scholar 

  27. Kawamoto A, Katayama M, Handa N, Kinoshita M, Takano H, Horii M, et al. Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27(11):2857–64. doi:10.1002/stem.207.

    Article  CAS  PubMed  Google Scholar 

  28. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30. doi:10.1161/Circinterventions.112.968321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K, Villa M, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2010;45(1):111–6. doi:10.1038/bmt.2009.102.

    Article  CAS  PubMed  Google Scholar 

  30. Fan CL, Gao PJ, Che ZQ, Liu JJ, Wei J, Zhu DL. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs. Acta Pharmacol Sin. 2005;26(9):1069–75. doi:10.1111/j.1745-7254.2005.00168.x.

    Article  CAS  PubMed  Google Scholar 

  31. Newman PJ, Hillery CA, Albrecht R, Parise LV, Berndt MC, Mazurov AV, et al. Activation-dependent changes in human platelet PECAM-1: phosphorylation, cytoskeletal association, and surface membrane redistribution. J Cell Biol. 1992;119(1):239–46.

    Article  CAS  PubMed  Google Scholar 

  32. Baumann CI, Bailey AS, Li WM, Ferkowicz MJ, Yoder MC, Fleming WH. PECAM-1 is expressed on hematopoietic stem cells throughout ontogeny and identifies a population of erythroid progenitors. Blood. 2004;104(4):1010–6. doi:10.1182/blood-2004-03-0989.

    Article  CAS  PubMed  Google Scholar 

  33. Behrem S, Zarkovic K, Eskinja N, Jonjic N. Endoglin is a better marker than CD31 in evaluation of angiogenesis in glioblastoma. Croat Med J. 2005;46(3):417–22.

    PubMed  Google Scholar 

  34. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328(23):1676–85. doi:10.1056/NEJM199306103282306.

    Article  CAS  PubMed  Google Scholar 

  35. Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29(5):369–76. doi:10.1002/dmrr.2399.

    Article  CAS  PubMed  Google Scholar 

  36. Sun L, Wu L, Qiao Z, Yu J, Li L, Li S, et al. Analysis of possible factors relating to prognosis in autologous peripheral blood mononuclear cell transplantation for critical limb ischemia. Cytotherapy. 2014;16(8):1110–6. doi:10.1016/j.jcyt.2014.03.007.

    Article  PubMed  Google Scholar 

  37. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, et al. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg. 2007;119(1):59–70. doi:10.1097/01.prs.0000244830.16906.3f.

    Article  CAS  PubMed  Google Scholar 

  38. Chen YH, Lin SJ, Lin FY, TC W, Tsao CR, Huang PH, et al. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes. 2007;56(6):1559–68. doi:10.2337/db06-1103.

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu I, Yoshida Y, Suda M, Minamino T. DNA damage response and metabolic disease. Cell Metab. 2014;20(6):967–77. doi:10.1016/j.cmet.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, et al. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012;15(1):51–64. doi:10.1016/j.cmet.2011.12.006. S1550-4131(11)00465-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15(9):1082–7. doi:10.1038/nm.2014.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y, et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 2013;18(4):491–504. doi:10.1016/j.cmet.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  43. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446(7134):444–8. doi:10.1038/nature05602. nature05602 [pii]

    Article  CAS  PubMed  Google Scholar 

  44. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005;23(10):1831–7. doi:10.1097/01.Hjh.0000183524.73746.1b.

    Article  CAS  PubMed  Google Scholar 

  45. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006;187(2):423–32. doi:10.1016/j.atherosclerosis.2005.10.009.

    Article  CAS  PubMed  Google Scholar 

  46. de Nigris F, Balestrieri ML, Williams-Ignarro S, D’Armiento FP, Lerman LO, Byrns R, et al. Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. J Cardiovasc Pharmacol. 2007;50(4):424–33. doi:10.1097/FJC.0b013e31812564e4.

    Article  CAS  PubMed  Google Scholar 

  47. Napoli C, Williams-Ignarro S, de Nigris F, de Rosa G, Lerman LO, Farzati B, et al. Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proc Natl Acad Sci U S A. 2005;102(47):17202–6. doi:10.1073/pnas.0508534102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sica V, Williams-Ignarro S, de Nigris F, D’Armiento FP, Lerman LO, Balestrieri ML, et al. Autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the diabetic mouse hindlimb. Cell Cycle. 2006;5(24):2903–8. doi:10.4161/Cc.5.24.3568.

    Article  CAS  PubMed  Google Scholar 

  49. Schirmer SH, Millenaar DN, Werner C, Schuh L, Degen A, Bettink SI, et al. Exercise promotes collateral artery growth mediated by monocytic nitric oxide. Arterioscl Throm Vas. 2015;35(8):1862–71. doi:10.1161/ATVBAHA.115.305806.

    Article  CAS  Google Scholar 

  50. Ott I, Keller U, Knoedler M, Gotze KS, Doss K, Fischer P, et al. Endothelial-like cells expanded from CD34(+) blood cells improve left ventricular function after experimental myocardial infarction. FASEB J. 2005;19(6):992–4. doi:10.1096/fj.04-3219fje.

    CAS  PubMed  Google Scholar 

  51. Arai M, Misao Y, Nagai H, Kawasaki M, Nagashima K, Suzuki K, et al. Granulocyte colony-stimulating factor - a noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circulation. 2006;70(9):1093–8. doi:10.1253/Circj.70.1093.

    Article  CAS  Google Scholar 

  52. Subramaniyam V, Waller EK, Murrow JR, Manatunga A, Lonial S, Kasirajan K, et al. Bone marrow mobilization with granulocyte macrophage colony-stimulating factor improves endothelial dysfunction and exercise capacity in patients with peripheral arterial disease. Am Heart J. 2009;158(1):53–U5. doi:10.1016/j.ahj.2009.04.014.

    Article  CAS  PubMed  Google Scholar 

  53. van Royen N, Schirmer SH, Atasever B, Behrens CYH, Ubbink D, Buschmann EE, et al. START trial - a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation. 2005;112(7):1040–6. doi:10.1161/Circulationaha.104.529552.

    Article  PubMed  Google Scholar 

  54. Poole J, Mavromatis K, Binongo JN, Khan A, Li Q, Khayata M, et al. Effect of progenitor cell mobilization with granulocyte-macrophage colony-stimulating factor in patients with peripheral artery disease: a randomized clinical trial. JAMA. 2013;310(24):2631–9. doi:10.1001/jama.2013.282540.

    Article  CAS  PubMed  Google Scholar 

  55. Jujo K, Hamada H, Iwakura A, Thorne T, Sekiguchi H, Clarke T, et al. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc Natl Acad Sci U S A. 2010;107(24):11008–13. doi:10.1073/pnas.0914248107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193(9):1005–14. doi:10.1084/Jem.193.9.1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, et al. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res. 2007;101(12):1310–8. doi:10.1161/CIRCRESAHA.107.153346.

    Article  CAS  PubMed  Google Scholar 

  58. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther. 2002;9(10):631–41. doi:10.1038/sj.gt.3301723.

    Article  CAS  PubMed  Google Scholar 

  59. Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK. Maximizing ventricular function with multimodal cell-based gene therapy. Circulation. 2005;112(9 Suppl):I123–8. doi:10.1161/CIRCULATIONAHA.104.525147.

    PubMed  Google Scholar 

  60. GH S, Sun YF, YX L, Shuai XX, Liao YH, Liu QY, et al. Hepatocyte growth factor gene-modified bone marrow-derived mesenchymal stem cells transplantation promotes angiogenesis in a rat model of hindlimb ischemia. J Huazhong Univ Sci Technolog Med Sci. 2013;33(4):511–9. doi:10.1007/s11596-013-1151-6.

    Article  Google Scholar 

  61. Yin T, He SS, Su C, Chen XC, Zhang DM, Wan Y, et al. Genetically modified human placenta-derived mesenchymal stem cells with FGF-2 and PDGF-BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep. 2015;12(4):5093–9. doi:10.3892/mmr.2015.4089.

    PubMed  PubMed Central  Google Scholar 

  62. Kawamoto A, Murayama T, Kusano K, Ii M, Tkebuchava T, Shintani S, et al. Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation. 2004;110(11):1398–405. doi:10.1161/01.CIR.0000141563.71410.64.

    Article  CAS  PubMed  Google Scholar 

  63. Rowe GC, Raghuram S, Jang C, Nagy JA, Patten IS, Goyal A, et al. PGC-1 alpha induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ Res. 2014;115(5):504–17. doi:10.1161/CIRCRESAHA.115.303829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu HM, Sun AJ, Zou YZ, Ge JB. Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia a hypoxia-induced and glycogen-based energy prestorage strategy. Arterioscler Thromb Vasc Biol. 2014;34(4):870–6. doi:10.1161/ATVBAHA.114.303194.

    Article  CAS  PubMed  Google Scholar 

  65. Kudo T, Hosoyama T, Samura M, Katsura S, Nishimoto A, Kugimiya N, et al. Hypoxic preconditioning reinforces cellular functions of autologous peripheral blood-derived cells in rabbit hindlimb ischemia model. Biochem Biophys Res Commun. 2014;444(3):370–5. doi:10.1016/j.bbrc.2014.01.054.

    Article  CAS  PubMed  Google Scholar 

  66. Iida K, Luo H, Hagisawa K, Akima T, Shah PK, Naqvi TZ, et al. Noninvasive low-frequency ultrasound energy causes vasodilation in humans. J Am Coll Cardiol. 2006;48(3):532–7. doi:10.1016/j.jacc.2006.03.046.

    Article  PubMed  Google Scholar 

  67. Atar S, Siegel RJ, Akel R, Ye Y, Lin Y, Modi SA, et al. Ultrasound at 27 kHz increases tissue expression and activity of nitric oxide synthases in acute limb ischemia in rabbits. Ultrasound Med Biol. 2007;33(9):1483–8. doi:10.1016/j.ultrasmedbio.2007.03.008.

    Article  PubMed  Google Scholar 

  68. Belcik JT, Mott BH, Xie A, Zhao Y, Kim S, Lindner NJ et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation. Circ Cardiovasc Imaging. 2015;8(4). doi:10.1161/CIRCIMAGING.114.002979.

  69. Song J, Qi M, Kaul S, Price RJ. Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation. 2002;106(12):1550–5.

    Article  PubMed  Google Scholar 

  70. Enomoto S, Yoshiyama M, Omura T, Matsumoto R, Kusuyama T, Nishiya D, et al. Microbubble destruction with ultrasound augments neovascularisation by bone marrow cell transplantation in rat hind limb ischaemia. Heart. 2006;92(4):515–20. doi:10.1136/hrt.2005.064162.

    Article  CAS  PubMed  Google Scholar 

  71. Kobulnik J, Kuliszewski MA, Stewart DJ, Lindner JR, Leong-Poi H. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection. J Am Coll Cardiol. 2009;54(18):1735–42. doi:10.1016/j.jacc.2009.07.023.

    Article  CAS  PubMed  Google Scholar 

  72. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, et al. In-111-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med. 2004;45(3):512–8.

    CAS  PubMed  Google Scholar 

  73. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107(16):2134–9. doi:10.1161/01.CIR.0000062649.63838.C9.

    Article  PubMed  Google Scholar 

  74. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202. doi:10.1161/01.CIR.0000163546.27639.AA.

    Article  PubMed  Google Scholar 

  75. Dedobbeleer C, Blocklet D, Toungouz M, Lambermont M, Unger P, Degaute JP, et al. Myocardial homing and coronary endothelial function after autologous blood CD34(+) progenitor cells intracoronary injection in the chronic phase of myocardial infarction. J Cardiovasc Pharmacol. 2009;53(6):480–5.

    Article  CAS  PubMed  Google Scholar 

  76. Tongers J, Webber MJ, Vaughan EE, Sleep E, Renault MA, Roncalli JG, et al. Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. J Mol Cell Cardiol. 2014;74:231–9. doi:10.1016/j.yjmcc.2014.05.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dash BC, Thomas D, Monaghan M, Carroll O, Chen XZ, Woodhouse K, et al. An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials. 2015;65:126–39. doi:10.1016/j.biomaterials.2015.06.037.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research, a Grant-in-Aid for Scientific Research on Innovative Areas (Stem Cell Aging and Disease), and a Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and grants from the Takeda Medical Research Foundation, the Japan Diabetes Foundation, the Ono Medical Research Foundation, the Daiichi Sankyo Foundation of Life Science, the Japan Foundation for Applied Enzymology, the Takeda Science Foundation, the SENSHIN Medical Research Foundation, and the Terumo Foundation (to T.M.); by a Grants-in-Aid for Young Scientists (Start-up) (JSPS KAKENHI, Grant Number 26893080) and grants from the Uehara Memorial Foundation, Takeda Science Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, Kanae Foundation, Japan Heart Foundation Research Grant, the Senri Life Science Foundation, SENSHIN Medical Research Foundation, ONO Medical Research Foundation, Tsukada Grant for Niigata University Medical Research, the Nakajima Foundation, SUZUKEN Memorial Foundation, HOKUTO Corporation, Inamori Foundation, Mochida Memorial Foundation for Medical and Pharmaceutical Research, Banyu Foundation Research Grant, Grant for Basic Science Research Projects from The Sumitomo Foundation, and Grants-in-Aid for Encouragement of Young Scientists (A) (JSPS KAKENHI Grant Number 16H06244) (to I.S.); by a Grants-in-Aid for Encouragement of Young Scientists (B) (JSPS KAKENHI Grant Number 16K19531), Japan Heart Foundation, Dr. Hiroshi Irisawa & Dr. Aya Irisawa Memorial Research Grant, SENSHIN Medical Research Foundation grant, SUZUKEN Memorial Foundation, Takeda Science Foundation, ONO Medical Research Foundation, Uehara Memorial Foundation, and Research Foundation for Community Medicine (to Y.Y.); and by a Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI Grant Number 15K09154) (to M.S.) and by a grant from Bourbon (to T.M., I.S., and Y.Y.).

Disclosures

M.S., I.S., Y.Y., and T.M. disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Minamino M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Suda, M., Shimizu, I., Yoshida, Y., Minamino, T. (2017). Peripheral Blood Mononuclear Cells for Limb Ischemia. In: Higashi, Y., Murohara, T. (eds) Therapeutic Angiogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-10-2744-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2744-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2743-7

  • Online ISBN: 978-981-10-2744-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics