Advertisement

A Random Key Generation Scheme Using Primitive Polynomials over GF(2)

  • Inderjeet SinghEmail author
  • Alwyn R. Pais
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 625)

Abstract

A new key generation algorithm is proposed using primitive polynomials over Glaois Field GF(2). In this approach, we have used MD5 algorithm to digest the system time and IP address of the system. The combination of these digest values acts as random seed for the key generation process. The randomness test for the generated key is performed by using Blum Blum Shub (BBS), Micali-Schnorr and Mersenne Twister (MT19937) PRNG algorithms. The generated key has been compared on the basis of the combination of 2 bit, 3 bit, 4 bit and 8 bit count values of 0’s and 1’s. In this paper, we have used chi squared test, R squared test and standard deviation to check the randomness of the generated key. We have analyzed our result based on the above three criteria and observed that the proposed algorithm achieves lower dispersion in 72.5 % of the test cases, lower error rate in 61.6 % of the test cases and higher fitness value in 68.3 % of the test cases.

Keywords

Primitive polynomials Key generation BBS GF(2) MT19937 MD5 IP 

References

  1. 1.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Saxena, N., McClusky, E.J.: Primitive polynomial generation algorithms-implementation and performance analysis. Technical report, vol. 31, Center for Reliable Computing (2004)Google Scholar
  3. 3.
    Li, C.-Y., Chen, J.-S., Chang, T.-Y.: A chaos-based pseudo random number generator using timing-based reseeding method. In: Proceedings of 2006 IEEE International Symposium on Circuits and Systems, ISCAS 2006, p. 4. IEEE (2006)Google Scholar
  4. 4.
    Chegini, M.G., Mehrabi, A.: Intelligent random sequence generating. In: Fifth International Conference on Natural Computation, ICNC 2009, vol. 4, pp. 307–310. IEEE (2009)Google Scholar
  5. 5.
    Lovett, S., Mukhopadhyay, P., Shpilka, A.: Pseudorandom generators for CC\(^{\text{ o }}\)[p] and the fourier spectrum of low-degree polynomials over finite fields. Comput. Complex. 22(4), 679–725 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Héam, P.-C., Nicaud, C.: Seed: an easy-to-use random generator of recursive data structures for testing. In: 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation (ICST), pp. 60–69. IEEE (2011)Google Scholar
  7. 7.
    Yadav, V.K., Agarwal, S., Uprety, J., Batham, S.: SRTS: a novel technique to generate random text. In: 2014 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 268–272. IEEE (2014)Google Scholar
  8. 8.
    Tkacik, T.E.: A hardware random number generator. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Goresky, M., Klapper, A.M.: Fibonacci and Galois representations of feedback-with-carry shift registers. IEEE Trans. Inf. Theor. 48(11), 2826–2836 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Key, E.L.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inf. Theor. 22(6), 732–736 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ding, C.: Blum-Blum-Shub generator. Electron. Lett. 33(8), 677–677 (1997)CrossRefGoogle Scholar
  12. 12.
    Konuma, S., Ichikawa, S.: Design and evaluation of hardware pseudo-random number generator MT19937. IEICE Trans. Inf. Syst. 88(12), 2876–2879 (2005)CrossRefGoogle Scholar
  13. 13.
    Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rivest, R.: The MD5 message-digest algorithm (1992)Google Scholar
  15. 15.
    Sidorenko, A., Schoenmakers, B.: Concrete security of the Blum-Blum-Shub pseudorandom generator. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 355–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Bland, J.M., Altman, D.G.: Statistics notes: measurement error. BMJ 313(7059), 744 (1996)CrossRefGoogle Scholar
  17. 17.
    Lewis, P.A.W., Goodman, A.S., Miller, J.M.: A pseudo-random number generator for the system/360. IBM Syst. J. 8(2), 136–146 (1969)CrossRefGoogle Scholar
  18. 18.
    Wikipedia: Coefficient of determination – Wikipedia, the free encyclopedia (2016). https://en.wikipedia.org/w/index.php?title=Coefficient_of_determination&oldid=723297210. Accessed 4 June 2016

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.National Institute of Technology SurathkalMangaloreIndia

Personalised recommendations