Enhancement of Detecting Wicked Website Through Intelligent Methods

  • Tarik A. RashidEmail author
  • Salwa O. MohamadEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 625)


Noticeably, different environments of wicked website include different types of information which could be a threat for all web users such as incitement for hacking sites and encouraging them for spreading notions through learning theft networks, Wi-Fi, websites, internet forums, Facebook, email accounts, etc. The proposed work deals with sites to protect from hacking through designing a method that takes full advantage of machine learning and intelligent systems’ capabilities to realize the informative contents. The ultimate goal of this work of research is to understand the system behavior and determine the best solution to secure the vulnerable users, state and society via Random Forest (RF) and Support Vector Machines (SVM) methods instead of traditional methods. Random Forest exhibited Promising Results in terms of accuracy.


Arabic websites Multi-class Random forest 


  1. 1.
    Abouenour, L., Bouzoubaa, K., Rosso, P.: Improving Q/A using Arabic Wordnet. In: Proceedings of the Arab Conference on Information Technology (CIT 2008). IBTIKARAT Research Group, Tunisia (2008)Google Scholar
  2. 2.
    Alkhalifa, M., Rodríguez, H.: Automatically extending NE coverage of Arabic WordNet using wikipedia. In: Proceedings of the 3rd International Conference on Arabic Language Processing, Rabat, Morocco, pp. 23–30 (2009)Google Scholar
  3. 3.
    Boudabous, M.M., Kammoun, N.C., Khedher, N., Belguith, L.H., Sadat, F.: Arabic WordNet semantic relations enrichment through morpholexical patterns. In: Proceedings of the 1st International Conference on Communications, Signal Processing and their Applications, pp. 1–6. IEEE Xplore Press, Sharjah (2013)Google Scholar
  4. 4.
    Elberrichi, Z., Abidi, K.: Arabic text categorization: a comparative study of different representation modes. Int. Arab J. Inform. Technol. 9, 465–470 (2012)Google Scholar
  5. 5.
    El-Halees, A.: A comparative study on Arabic text classification. Egypt. Comput. Sci. J. 20, 57–64 (2008)Google Scholar
  6. 6.
    Yousif, S.A., Samawi, V.W., Elkabani, I., Zantout, R.: Enhancement of Arabic text classification using semantic relations of Arabic WordNet article. J. Comput. Sci. 11(3), 498–509 (2015)CrossRefGoogle Scholar
  7. 7.
    Duwairi, R.: Arabic text categorization. Int. Arab J. Inform. Technol. 4, 125–131 (2007)Google Scholar
  8. 8.
    Yadav, M., Mittal, P.: Web mining: an introduction. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 683–687 (2013)Google Scholar
  9. 9.
    Kumbhar, V.S., Oza, K.S.: Educational web mining using weka. Int. J. Eng. Trends Technol. (IJETT) 26(3), 128–131 (2015)CrossRefGoogle Scholar
  10. 10.
    Alahmadi, A., Joorabchi, A., Mahdi, A.E.: Combining bag-of-words and bag-of-concepts representations for Arabic text classification. In: Proceedings of the 25th IET Irish Signals and Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies, pp. 343–348. IEEE Xplore Press, Limerick (2014)Google Scholar
  11. 11.
    Zubi, Z.S.: Using some web content mining techniques for Arabic text classification recent advances on data networks, communications, computers, pp. 73–84 (2009)Google Scholar
  12. 12.
    Ramos, J.: Using tf-idf to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning (2003)Google Scholar
  13. 13.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 1155–1158. ACM, Chicago (2010)Google Scholar
  14. 14.
    Zubi, Z.S.: Text classification in deep web mining latest trends. In: Applied Informatics and Computing, pp. 55–64 (2010)Google Scholar
  15. 15.
    Al-Shargabi, B., Alromima, W., Olayah, F.: A comparative study for Arabic text classification algorithms based on stop words elimination. In: Proceedings of the 2nd International Conference on Intelligent Semantic Web-Services and Applications, Amman, Jordan (2011)Google Scholar
  16. 16.
    Alsaad, A., Abbod, M.: Arabic text root extraction via morphological analysis and linguistic constraints. In: 16th International Conference on Computer Modelling and Simulation, pp. 125–130. IEEE, Cambridge (2014)Google Scholar
  17. 17.
    Belmouhcine, A., Benkhalifa, M.: Implicit links based web page representation for web page classification. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, WIMS 2015. ACM, New York (2015)Google Scholar
  18. 18.
    Hammo, B., Abu-Salem, H., Lytinen, S., Evens, M.: QARAB: a question answering system to support the arabic language. In: Workshop on Computational Approaches to Semitic Languages, pp. 55–65, Philadelphia (2002)Google Scholar
  19. 19.
    Khorsheed, M.S., Al-Thubaity, A.O.: Comparative evaluation of text classification techniques using a large diverse Arabic dataset. Lang. Resour. Eval. 47, 513–538 (2013)CrossRefGoogle Scholar
  20. 20.
    Fodil, L., Sayoud, H., Ouamour, S.: Theme classification of Arabic text: a statistical approach. In: Proceedings of the Terminology and Knowledge Engineering (TKE 2014) (2014)Google Scholar
  21. 21.
    Harrag, F., El-Qawasmah E.: Neural network for Arabic text classification. In: Proceedings of the 2nd International Conference on the Applications of Digital Information and Web Technologies, pp. 778–783. IEEE Xplore Press, London (2009)Google Scholar
  22. 22.
    Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)zbMATHGoogle Scholar
  23. 23.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)zbMATHGoogle Scholar
  24. 24.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  26. 26.
    Lin, C.-J.: Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Trans. Neural Netw. 13(1), 248–250 (2002)CrossRefGoogle Scholar
  27. 27.
    Platt, J.C.: Sequential minimal optimization: a fast algorithm for training support vector machines: advances in kernel methods – support vector learning (1998)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Software and Informatics EngineeringCollege of Engineering, Salahaddin University-ErbilHawlerIraq
  2. 2.School of Computer ScienceCollege of Science, University of SulaimaniaSulaimaniaIraq

Personalised recommendations