Advertisement

Mutual Authentication Based on HECC for RFID Implant Systems

  • Asha Liza JohnEmail author
  • Sabu M. Thampi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 625)

Abstract

The Internet of Things (IoT) is an environment in which “things” (objects, animals or people) are provided with unique identifiers (IPv6 addresses) and the ability to communicate over a network without requiring human-to-human or human-to-computer interaction. Radio-Frequency Identification Technology (RFID) is the key enabler of the IoT. The RFID Implant System considered in the proposed work consists of an implantable, passive RFID tag which is a data carrying device that is attached to the object to be identified, RFID reader which communicates with the tag in order to read or write data to its memory and, the back-end database which stores information related to the identified object. There are several security issues associated with the use of RFID tags in IoT like eavesdropping, impersonation, cloning, replay attack, tag destruction, unauthorized tag reading, tag modification etc. To defend such attacks effectively, efficient security mechanisms are essential. So, the proposed system aims to provide a secure mutual authentication mechanism based on Hyper Elliptic Curve Cryptography (HECC) to authenticate the communication between the RFID tag and reader. The security of Hyper-elliptic Curve Cryptosystem depends on the hardness of solving hyper-elliptic curve discrete logarithm problem (HCDLP). This problem helps to avoid the eavesdropper from breaking into the security of the HECC cryptosystem. The proposed work also uses D-Quark hash algorithm.

Keywords

RFID Implant System IoT Security Healthcare Mutual authentication Hyper-elliptic curve cryptography 

References

  1. 1.
    Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: Public-key cryptography for RFID-tags. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2007, pp. 217–222. IEEE (2007)Google Scholar
  2. 2.
    Liu, D., Yang, Y., Wang, J., Min, H.: A mutual authentication protocol for RFID using IDEA. Auto-ID Labs White Paper WP-HARDWARE-048, March 2009Google Scholar
  3. 3.
    Chou, J.-S.: An efficient mutual authentication RFID scheme based on elliptic curve cryptography. J. Supercomput. 70(1), 75–94 (2014). SpringerCrossRefGoogle Scholar
  4. 4.
    Lee, Y.K., Batina, L., Singelée, D., Verbauwhede, I.: Wide–weak privacy–preserving RFID authentication protocols. In: Chatzimisios, P., Verikoukis, C., Santamaría, I., Laddomada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45, pp. 254–267. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, Y.K., Batina, L., Singelee, D., Preneel, B., Verbauwhede, I.: An-counterfeiting, untraceability and other security challenges for RFID systems: public-key-based protocols and hardware. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security, pp. 237–257. Springer, Berlin (2010)CrossRefGoogle Scholar
  6. 6.
    Mitrokotsa, A., Rieback, M.R., Tanenbaum, A.S.: Classification of RFID attacks. G. E. N. 15693, 14443 (2010)Google Scholar
  7. 7.
    Moosavi, S.R., Nigussie, E., Virtanen, S., Isoaho, J.: An elliptic curve-based mutual authentication scheme for RFID implant systems. Procedia Comput. Sci. 32, 198–206 (2014)CrossRefGoogle Scholar
  8. 8.
    Paise, R.-I., Vaudenay, S.: Mutual authentication in RFID: security and privacy. In: Proceedings of the 2008 ACM symposium on Information, Computer and Communications Security, pp. 292–299. ACM (2008)Google Scholar
  9. 9.
    Pham, T.A., Hasan, M.S., Yu, H.: An RFID mutual authentication protocol based on AES algorithm. In: 2012 UKACC International Conference on Control, pp. 997–1002. IEEE, September 2012Google Scholar
  10. 10.
    Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Wankhede Barsgade, M.T., Meshram, S.A.: Comparative study of elliptic and hyper-elliptic curve cryptography in discrete logarithmic problem. IOSR J. Math. 10(2), 61–63 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhang, X., Li, J., Wu, Y., Zhang, Q.: An ECDLP-based randomized key RFID authentication protocol. In: 2011 International Conference on Network Computing and Information Security (NCIS), vol. 2, pp. 146–149 (2011)Google Scholar
  13. 13.
    Liao, Y.-P., Hsiao, C.-M.: A secure ECC-based RFID authentication scheme integrated with ID-verifier transfer protocol. Ad Hoc Netw. 18, 133–146 (2014)Google Scholar
  14. 14.
    Pelzl, J., Wollinger, T., Guajardo, J., Paar, C.: Hyperelliptic curve cryptosystems: closing the performance gap to elliptic curves. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 351–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Indian Institute of Information Technology and Management - Kerala (IIITM-K)TrivandrumIndia

Personalised recommendations