Elliptic Curve Based Secure Outsourced Computation in Multi-party Cloud Environment

  • V ThangamEmail author
  • K Chandrasekaran
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 625)


Secure Multi-Party Computation (SMPC) is a scheme where a set of trusted users will calculate a certain function on their inputs where the inputs will be always in an encrypted format for security purpose. In many cases, outsourcing of these calculations to an untrusted cloud server is desirable because of huge computational power of cloud server and storage space provided by them to process the data. However, the existing secure computation approaches are based on either a single key setup or old traditional encryption methods. In this paper, we suggested two secure multi-party computation techniques based on the latest elliptic curve cryptosystem. In which, we used two non-colluding cloud servers to co-operatively compute the outsourcing calculation with minimum number of interactions between them. However, it is ensured that the inputs, intermediate and final results all remain secret throughout the calculation.


Secure multi-party computation Outsourced computation CTR1-SMPC Improved CTR1-SMPC 


  1. 1.
    Song, D., Shi, E., Fischer, I., Shankar, U.: Cloud data protection for the masses. IEEE Comput. 45(1), 39–45 (2012)CrossRefGoogle Scholar
  2. 2.
    Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012)CrossRefGoogle Scholar
  3. 3.
    L´opez, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of STOC 2012 (2012)Google Scholar
  4. 4.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of STOC 2009 (2009)Google Scholar
  5. 5.
    Brakerski Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of FOCS 2011 (2011)Google Scholar
  6. 6.
    Yao, A.: Protocols for secure computations. In: Proceedings of FOCS, pp. 160–164 (1982)Google Scholar
  7. 7.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of STOC 2013 (2013)Google Scholar
  8. 8.
    Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)CrossRefGoogle Scholar
  9. 9.
    Bresson, Emmanuel, Catalano, Dario, Pointcheval, David: A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications. In: Laih, Chi-Sung (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of STOC, pp. 11–19 (1988)Google Scholar
  11. 11.
    Bendlin, Rikke, Damgård, Ivan, Orlandi, Claudio, Zakarias, Sarah: Semi-homomorphic encryption and multiparty computation. In: Paterson, Kenneth G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Proceedings of PKC, pp. 420–443 (2010)Google Scholar
  13. 13.
    Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundred of millions of records. In: Proceedings of IEEE S&P 2013 (2013)Google Scholar
  14. 14.
    Halevi, Shai, Lindell, Yehuda, Pinkas, Benny: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, Phillip (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing Multi-Party Computation.
  16. 16.
    Kamara, S., Mohassel, P., Riva, B.: Salus: A system for server-aided secure function evaluation. In: Proceedings of ACM CCS 2012, pp. 797–808 (2012)Google Scholar
  17. 17.
    Chow, S.S.M., Lee, J.H., Subramanian, L.: Two-party computation model for privacy-preserving queries over distributed databases. In: Proceedings of NDSS 2009 (2009)Google Scholar
  18. 18.
    Wang, C., Ren, K., Wang, J., Secure and practical outsourcing of linear programming in cloud computing. In: Proceedings of INFOCOM, pp. 820–828 (2011)Google Scholar
  19. 19.
    Wang, C., Ren, K., Wang, J., Urs, K.M.R.: Harnessing the cloud for securely solving large-scale systems of linear equations. In: Proceedings of ICDCS (2011)Google Scholar
  20. 20.
    Blaze, Matt, Bleumer, Gerrit, Strauss, Martin J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, Kaisa (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Wang, B., Li, M., Chow, S.S.M., Li, H.: Computing encrypted cloud data efficiently under multiple keys. In: Proceedings of CNS-SPCC (2013)Google Scholar
  22. 22.
    Wang, B., Li, M., Chow, S.S.M., Li, H.: A tale of two clouds: computing on data encrypted under multiple keys. In: Proceedings of CNS (2014)Google Scholar
  23. 23.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  24. 24.
    Thangam V., Chandrasekarn, K.: Elliptic curve based proxy re-encryption. In: Proceedings of ICTCS (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations