Next Generation 3-D Spin Transfer Torque Magneto-resistive Random Access Memories

  • Brajesh Kumar KaushikEmail author
  • Shivam Verma
  • Anant Aravind Kulkarni
  • Sanjay Prajapati
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Spin transfer torque magneto-resistive random access memories (STT MRAMs) are non-volatile memories that potentially demonstrate high speed and integration density. These exclusive features of STT MRAMs are rapidly gaining attention of memory designers. They are strong contenders for futuristic embedded memory applications. However, further reduction in write power dissipation and cell size is essential to employ STT MRAMs for embedded applications.


Resistive Random Access Memory Magnetic Tunnel Junction Switching Threshold Subthreshold Slope Perpendicular Magnetic Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Emerging research devices (2011). International technology road map for semiconductors [Online]. Available:
  2. 2.
    T. Schloesser, F. Jakubowski, J. V. Kluge, A. Graham, S. Slesazeck, M. Popp, P. Baars, K. Muemmler, P. Moll, K. Wilson, A. Buerke, D. Koehler, J. Radecker, E. Erben, U. Zimmermann, T. Vorrath, B. Fischer, G. Aichmayr, R. Agaiby, W. Pamler, T. Schuster, W. Bergner, and W. Mueller, “6F2 buried wordline DRAM cell for 40 nm and beyond,” Proc. IEEE Int. Elect. Dev. Meet. (IEDM 2008), San Francisco, CA, 2008, pp. 1–4.Google Scholar
  3. 3.
    H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K.-W. Song, J. Kim, Y. C. Oh, Y. Hwang, H. Hong, G.-Y. Jin, and C. Chung, “Novel 4F2 DRAM cell with vertical pillar transistor (VPT),” Proc. IEEE Eur. Sol. Dev. Res. Conf. (ESSDERC 2011), Helsinki, 2011, pp. 211–214.Google Scholar
  4. 4.
    Z. Fang, X. P. Wang, X. Li, Z. X. Chen, A. Kamath, G. Q. Lo, and D. L. Kwong, “Fully CMOS-compatible 1T1R integration of vertical nanopillar GAA transistor and oxide-based RRAM cell for high-density,” IEEE Trans. Elect. Dev., vol. 60, no. 3, pp. 1108–1113, 2013.Google Scholar
  5. 5.
    T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: review and prospect,” Microelect. Reliab., vol. 52, no. 4, pp. 613–627, 2012.Google Scholar
  6. 6.
    S. Ikeda, H. Sato, M. Yamanouchi, H. Gan, K. Miura, K. Mizunuma, S. Kanai, S. Fukami, F. Matsukura, N. Kasai, and H. Ohno, “Recent progress of perpendicular anisotropy magnetic tunnel junctions for nonvolatile VLSI,” Spin World Sci., vol. 02, no. 03, pp. 1240003-1–1240003-12, 2012.Google Scholar
  7. 7.
    S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, and Y. Ohno, T. Hanyu, H. Ohno “Magnetic tunnel junctions for spintronic memories and beyond,” IEEE Trans. Elect. Dev., vol. 54, no. 5, pp. 991–1002, 2007.Google Scholar
  8. 8.
    T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi, H. Matsuoka, and H. Ohno, “2 Mb SPRAM (spin-transfer torque RAM) with bit-by-bit bi-directional current write,” IEEE Trans. Sol. Cir., vol. 43, no. 1, pp. 109–120, 2008.Google Scholar
  9. 9.
    S. Verma, P. K. Pal, S. Mahawar, and B. K. Kaushik, “Performance Enhancement of STT MRAM using asymmetric-k sidewall-spacer NMOS,” IEEE Trans. on Elect. Dev., vol. 63, no. 7, pp. 2771–2776, 2016.Google Scholar
  10. 10.
    J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing.,” Nat. Nanotech., vol. 8, no. 1, pp. 13–24, 2013.Google Scholar
  11. 11.
    X. P. Wang, Z. X. Chen, X. Li, A. R. Kamath, L. J. Tang, D. Mei, Y. Lai, P. C. Lim, D. Teng, H. Li, N. Singh, P. Guo, Q. Lo, and D. Kwong, “HfOx-based RRAM cells with fully CMOS compatible technology,” Proc. IEEE Int. Conf. Sol. Inte. Cir. (ICSIC 2012), Singapore, 2012, pp. 1–6.Google Scholar
  12. 12.
    B. Chen, X. Wang, B. Gao, Z. Fang, J. Kang, L. Liu, X. Liu, G.-Q. Lo, and D.-L. Kwong, “Highly compact (4F 2) and well behaved nano-pillar transistor controlled resistive switching cell for neuromorphic system application,” Nat. Sci. Rep., vol. 4, pp. 6863-1–6863-5, 2014.Google Scholar
  13. 13.
    X. Wang, Z. Fang, X. Li, and B. Chen, “Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation,” Proc. IEEE Int. Elect. Dev. Meet. (IEDM 2012), San Francisco, CA, 2012, pp. 20.6.1–20.6.4.Google Scholar
  14. 14.
    D.-L. Kwong, X. Li, Y. Sun, G. Ramanathan, Z. X. Chen, S. M. Wong, Y. Li, N. S. Shen, K. Buddharaju, Y. H. Yu, S. J. Lee, N. Singh, and G. Q. Lo, “Vertical silicon nanowire platform for low power electronics and clean energy applications,” J. Nanotechn., vol. 2012, pp. 1–21, 2012.Google Scholar
  15. 15.
    Process integration device and structures (2001). International technology roadmap for semiconductors [Online]. Available:
  16. 16.
    Y. Song, Q. Xu, J. Luo, and H. Zhou, “Performance breakthrough in gate-all-around nanowire n- and p-type MOSFETs fabricated on bulk silicon substrate,” IEEE Elect. Dev. Lett., vol. 59, no. 7, pp. 1885–1890, 2012.Google Scholar
  17. 17.
    S. Verma, S. Kaundal, and B. K. Kaushik, “Novel 4F 2 buried-source-line STT MRAM cell with vertical GAA transistor as select device,” IEEE Trans. on Nanotechn., vol. 13, no. 6, pp. 1163–1171, 2014.Google Scholar
  18. 18.
    Z. Li and S. Zhang, “Thermally assisted magnetization reversal in the presence of a spin-transfer torque,” Phys. Rev. B, vol. 69, no. 13, p. 134416, Apr. 2004.Google Scholar
  19. 19.
    S. Verma, M. S. Murthy, and B. K. Kaushik, “All spin logic (ASL): A micromagnetic perspective,” IEEE Trans. on Mag., vol. 51, no. 10, pp. 3400710-1–3400710-7, 2015.Google Scholar
  20. 20.
    J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits: A design perspective, Upper Saddle River, NJ, Prentice-Hall, 2003, pp. 177–233.Google Scholar
  21. 21.
    D. D. Tang, and Y. J. Lee, Magnetic memory fundamentals and technology, Cambridge, UK, Cambridge University Press, 2010, pp. 122–164.Google Scholar
  22. 22.
    ATLAS user’s manual, Silvaco Inc., 2012. Available:
  23. 23.
    L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for MOS transistors,” Proc. 23rd IEEE Int. Semicond. Conf. (CAS 2000), Sinaia, 2000, pp. 371–374.Google Scholar
  24. 24.
    A. Bazigos, M. Bucher, J. Assenmacher, S. Decker, W. Grabinski, and Y. Papananos, “An adjusted constant-current method to determine saturated and linear mode threshold voltage of MOSFETs,” IEEE Trans. Elect. Dev., vol. 58, no. 11, pp. 3751–3758, 2011.Google Scholar
  25. 25.
    W. J. Zhu, and T. P. Ma, “Temperature dependence of channel mobility in HfO2-gated NMOSFETs,” IEEE Elect. Dev. Lett., vol. 25, no. 2, pp. 89–91, 2004.Google Scholar
  26. 26.
    R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic, “Application of high-k gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology,” Microelect. Eng., vol. 80, pp. 1–6, 2005.Google Scholar
  27. 27.
    V. Sriramkumar, N. Paydavosi, J. Duarte, D. Lu, C. Hsun Lin, M. Dunga, S. Yao, T. Morshed, A. Niknejad and C. Hu, “BSIM-CMG 107.0.0 multi-gate MOSFET compact model: technical manual,” Dept. of Electrical Engineering and Computer Sciences, Univ. of California, Berkeley, 2013.Google Scholar
  28. 28.
    G. Jan, Y.-J. Wang, T. Moriyama, Y.-J. Lee, M. Lin, T. Zhong, R.-Y. Tong, T. Torng and P.-K Wang “High spin torque efficiency of magnetic tunnel junctions with MgO/CoFeB/MgO free layer,” Appl. Phys. Exp., vol. 5, pp. 093008-1–093008-3, 2012.Google Scholar
  29. 29.
    L. Thomas, G. Jan, J. Zhu, H. Liu, Y.-J. Lee, S. Le, R.-Y. Tong, K. Pi, Y.-J. Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong, T. Torng, and P.-K. Wang, “Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited),” J. Appl. Phys., vol. 115, no. 17, pp. 172615-1–172615-6, 2014.Google Scholar
  30. 30.
    B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong, “Vertical silicon-nanowire formation and gate-all-around MOSFET,” IEEE Elect. Dev. Lett., vol. 29, no. 7, pp. 791–794, 2008.Google Scholar
  31. 31.
    R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-nanowire n-type tunneling FETs with low subthreshold swing at room temperature,’ IEEE Elect. Dev. Lett., vol. 32, no. 4, 437–439, 2011.Google Scholar
  32. 32.
    S. H Kang, D. Bang, and K. Lee, “One-mask MTJ integration for STT MRAM,” U.S. Patent 2009/0261433 A1, 2009.Google Scholar
  33. 33.
    E. J. O’Sullivan, Magnetic tunnel junction-based MRAM and related processing issues “IBM Research Report,” RC23525, 2005.Google Scholar
  34. 34.
    Yuchen Zho, and Yiming Huai, “STT-MRAM manufacturing method with in-situ annealing,” U.S. Patent US8758850 B2, June 24, 2014.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Brajesh Kumar Kaushik
    • 1
    Email author
  • Shivam Verma
    • 1
  • Anant Aravind Kulkarni
    • 1
  • Sanjay Prajapati
    • 1
  1. 1.Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations