Skip to main content

Emerging Memory Technologies

  • Chapter
  • First Online:
Next Generation Spin Torque Memories

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1166 Accesses

Abstract

In conventional memory hierarchy, memories near and away from the processor provide short and long latencies (see Fig. 1.1), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Nitayama, Y. Kohyama, and K. Hieda, “Future directions for DRAM memory cell technology,” Int. Elect. Dev. Meet. 1998. Tech. Dig. (Cat. No.98CH36217), pp. 355–358, 1998.

    Google Scholar 

  2. M. Qazi, M. E. Sinangil, and A. P. Chandrakasan, “Challenges and directions for low-voltage SRAM,” IEEE Des. Test Compu., vol. 28, no. 1, pp. 32–43, 2011.

    Google Scholar 

  3. P. Gepner and M. F. Kowalik, “Multi-Core Processors: New way to achieve high system performance,” Int. Symp. Para. Compu. Elect. Eng., pp. 0–4, 2006.

    Google Scholar 

  4. S. Yoo, “Introduction to flash memory operation,” Proc. of IEEE, vol. 91, no. 4, pp. 1–16, 2009.

    Google Scholar 

  5. C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging non-volatile memories,” Proc. 17th IEEE/ACM/IFIP Int. Conf. Har./sof. Codes. Sys. Synth. - CODES + ISSS ’11, p. 325, 2011.

    Google Scholar 

  6. H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change memory,” Proc. IEEE, vol. 98, no. 12, pp. 2201–2227, 2010.

    Google Scholar 

  7. H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251, 2010.

    Google Scholar 

  8. S. Park, B. Magyari-kope, and Y. Nishi, “First-principles study of resistance switching in rutile TiO2 with oxygen vacancy,” Nonvol. Mem. Tech. Symp. 2008, no. c, pp. 2–6, 2008.

    Google Scholar 

  9. Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, “Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions,” IEEE Elect. Dev. Lett., vol. 30, no. 12, pp. 1335–1337, 2009.

    Google Scholar 

  10. H. Akinaga and H. Shima, “ReRAM technology; challenges and prospects,” IEICE Elect. Exp., vol. 9, no. 8, pp. 795–807, 2012.

    Google Scholar 

  11. U. Bottger and S. R. Summerfelt, “Ferroelectric random access memories,” Nanoelect. Inf. Tech., vol. 12, no. 10, pp. 565–590, 2003.

    Google Scholar 

  12. T. Mikolajick, S. Müller, T. Schenk, E. Yurchuk, S. Slesazeck, U. Schröder, S. Flachowsky, R. Van Bentum, S. Kolodinski, P. Polakowski, and J. Müller, “Doped Hafnium oxide – An enabler for ferroelectric field effect transistors,” Adv. in sci. and Tech., vol. 95, pp. 136–145, 2014.

    Google Scholar 

  13. J. M. Slaughter, “Recent advances in MRAM technology,” 65th DRC Dev. Res. Conf., vol. 42, no. August 2006, pp. 245–246, 2006.

    Google Scholar 

  14. D. Apalkov, A. Ong, A. Driskill-Smith, M. Krounbi, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon, X. Luo, and E. Chen, “Spin-transfer torque magnetic random access memory (STT-MRAM),” ACM J. Emer. Tech. Comp. Sys., vol. 9, no. 2, pp. 1–35, 2013.

    Google Scholar 

  15. X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy, “Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE Trans. Compu. Des. Inte. Cir. Sys., vol. 35, no. 1, pp. 1–22, 2016.

    Google Scholar 

  16. T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: Review and prospect,” Microelect. Reliab., vol. 52, no. 4, pp. 613–627, 2012.

    Google Scholar 

  17. F.J.A.D. Broeder, W. Hoving, and P.J.H. Bloemen, “Magnetic anisotropy of multilayers,” J. of Magn. and Mag. Mat., vol. 93, pp. 562–570, 1991.

    Google Scholar 

  18. G. Prenat, K. Jabeur, P. Vanhauwaert, G. Di Pendina, F. Oboril, R. Bishnoi, M. Ebrahimi, N. Lamard, O. Boulle, K. Garello, J. Langer, B. Ocker, M. C. Cyrille, P. Gambardella, M. Tahoori, and G. Gaudin, “Ultra-fast and high-reliability SOT-MRAM: From cache replacement to normally-Off computing,” IEEE Trans. Mul. Compu. Sys., vol. 2, no. 1, pp. 49–60, 2016.

    Google Scholar 

  19. J. E. Hirsch, “Spin Hall Effect,” Phy. Rev. Let., vol. 83, no. 9, pp. 1834–1837, 1999.

    Google Scholar 

  20. H. Numata, T. Suzuki, N. Ohshima, S. Fukami, K. Nagahara, N. Ishiwata, and N. Kasai, “Scalable cell technology utilizing domain wall motion for high-speed MRAM,” IEEE symp. of VLSI Tech., June 2007, vol. 89, pp. 232–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Kaushik .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Kaushik, B.K., Verma, S., Kulkarni, A.A., Prajapati, S. (2017). Emerging Memory Technologies. In: Next Generation Spin Torque Memories. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2720-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2720-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2719-2

  • Online ISBN: 978-981-10-2720-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics