Skip to main content

A Prologue to Moyamoya Disease and RNF213

  • Chapter
  • First Online:
Moyamoya Disease Explored Through RNF213

Abstract

Almost 20 years after the first case reported in 1955, moyamoya disease (MMD) was still thought to be specific to Asian populations. During the past 60 years, however, MMD has become globally recognized and tremendous therapeutic advances have been made. In 2011, RNF213 (mysterin) was identified as the major susceptibility gene for MMD. RNF213 is a large protein (591 kDa) and contains both AAA+ ATPase and E3 ligase domains. The p.R4810K variant, a founder mutation common to East Asians, is found at a rate of 70–90% in Japanese and Korean MMD patients and even shows a 1–3% allelic frequency in the general Japanese and Korean populations. As only a minor proportion (approx. 1 out of 200) of carriers develop MMD, environmental factors are thought to be major contributors to the progress of MMD. Recent in vitro molecular studies have revealed that p.R4810K induces endothelial dysfunction, which may ultimately lead to arterial stenosis and development of moyamoya vessels. Furthermore, RNF213 is found to be involved in interferon (IFN), noncanonical wnt, and PTP1B/α-ketoglutarate-dependent dioxygenase signal cascades. Such pathways are known to be activated in response to environmental stress signals, such as infection, inflammation, or hypoxia, which may therefore be involved in promoting the development of MMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu K, Takeuchi K. Bilateral hypoplasia of internal carotid arteries. (in Japanese). The 14th Annual meeting of the Japan Neurosurgical Society; 1955.

    Google Scholar 

  2. Takeuchi K, Shimizu K. Hypoplasia of bilateral internal carotid arteries. (in Japanese). Brain Nerve. 1957;9:37–43.

    Google Scholar 

  3. Suzuki J, Kowada M, Kyoku H, Takaku A. Clinical investigation on cases presenting unique angiographic images with collateral vessels by angiography (in Japanese). The 22nd Annual meeting of the Japan Neurosurgical Society; 1963.

    Google Scholar 

  4. Kudo T. Spontaneous occlusion of the circle of Willis. A disease apparently confined to Japanese. Neurology. 1968;18(5):485–96.

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita M, Oka K, Tanaka K. Cervico-cephalic arterial thrombi and thromboemboli in moyamoya disease–possible correlation with progressive intimal thickening in the intracranial major arteries. Stroke. 1984;15(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda E. Systemic vascular changes in spontaneous occlusion of the circle of Willis. Stroke. 1991;22(11):1358–62.

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20(3):288–99.

    Article  CAS  PubMed  Google Scholar 

  8. Karasawa J, Kikuchi H, Furuse S, Kawamura J, Sakaki T. Treatment of moyamoya disease with STA-MCA anastomosis. J Neurosurg. 1978;49(5):679–88. doi:10.3171/jns.1978.49.5.0679.

    Article  CAS  PubMed  Google Scholar 

  9. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7(11):1056–66.

    Article  PubMed  Google Scholar 

  10. Miao W, Zhao PL, Zhang YS, Liu HY, Chang Y, Ma J, et al. Epidemiological and clinical features of Moyamoya disease in Nanjing, China. Clin Neurol Neurosurg. 2010;112(3):199–203. doi:10.1016/j.clineuro.2009.11.009.

    Article  PubMed  Google Scholar 

  11. Uchino K, Johnston SC, Becker KJ, Tirschwell DL. Moyamoya disease in Washington state and California. Neurology. 2005;65(6):956–8. doi:10.1212/01.wnl.0000176066.33797.82.

    Article  PubMed  Google Scholar 

  12. Koizumi A, Kobayashi H, Hitomi T, Harada KH, Habu T, Youssefian S. A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med. 2015;21(2):55–70. doi:10.1007/s12199-015-0498-7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koizumi A. Genetic analysis of familial moyamoya. Annual report of the research committee on spontaneous occlusion of the circle of willis (Moyamoya Disease by Science Research Grants of Ministry of Health, Labor and Welfare, Japan (Chaired by N. Hashimoto); 2010.

    Google Scholar 

  14. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011;56(1):34–40. doi:10.1038/jhg.2010.132.

    Article  CAS  PubMed  Google Scholar 

  15. Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6(7):e22542. doi:10.1371/journal.pone.0022542. PONE-D-10-04031 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morito D, Nishikawa K, Hoseki J, Kitamura A, Kotani Y, Kiso K, et al. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci Report. 2014;4:4442. doi:10.1038/srep04442.

    Article  Google Scholar 

  17. eEnsemblAsiaGenetree. http://asia.ensembl.org/Homo_sapiens/Gene/Compara_Tree?db=core;g=ENSG00000173821;r=17:80260866-80398786. Accessed 26 July 2016.

  18. Hitomi T, Habu T, Kobayashi H, Okuda H, Harada KH, Osafune K, et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun. 2013;438(1):13–9. doi:10.1016/j.bbrc.2013.07.004. S0006-291X(13)01144-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi H, Matsuda Y, Hitomi T, Okuda H, Shioi H, Matsuda T, et al. Biochemical and functional characterization of RNF213 (Mysterin) R4810K, a susceptibility mutation of moyamoya disease, in Angiogenesis In Vitro and In Vivo. J Am Heart Assoc. 2015;4(7) doi:10.1161/JAHA.115.002146.

  20. Ohkubo K, Sakai Y, Inoue H, Akamine S, Ishizaki Y, Matsushita Y, et al. Moyamoya disease susceptibility gene RNF213 links inflammatory and angiogenic signals in endothelial cells. Sci Report. 2015;5:13191. doi:10.1038/srep13191.

    Article  CAS  Google Scholar 

  21. Kaku Y, Morioka M, Ohmori Y, Kawano T, Kai Y, Fukuoka H, et al. Outer-diameter narrowing of the internal carotid and middle cerebral arteries in moyamoya disease detected on 3D constructive interference in steady-state MR image: is arterial constrictive remodeling a major pathogenesis? Acta Neurochir. 2012;154(12):2151–7. doi:10.1007/s00701-012-1472-4.

    Article  PubMed  Google Scholar 

  22. Scholz B, Korn C, Wojtarowicz J, Mogler C, Augustin I, Boutros M, et al. Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling. Dev Cell. 2016;36(1):79–93. doi:10.1016/j.devcel.2015.12.015.

    Article  CAS  PubMed  Google Scholar 

  23. Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, et al. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 2016;18(7):803–13. doi:10.1038/ncb3376.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JH, Chun T, Park SY, Rho SB. Interferon regulatory factor-1 (IRF-1) regulates VEGF-induced angiogenesis in HUVECs. Biochim Biophys Acta. 2008;1783(9):1654–62. doi:10.1016/j.bbamcr.2008.04.006.

    Article  CAS  PubMed  Google Scholar 

  25. Domigan CK, Warren CM, Antanesian V, Happel K, Ziyad S, Lee S, et al. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J Cell Sci. 2015;128(12):2236–48. doi:10.1242/jcs.163774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravichandran LV, Chen H, Li Y, Quon MJ. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001;15(10):1768–80. doi:10.1210/mend.15.10.0711.

    Article  CAS  PubMed  Google Scholar 

  27. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5. doi:10.1038/21224.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Koizumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Koizumi, A., Youssefian, S. (2017). A Prologue to Moyamoya Disease and RNF213 . In: Koizumi, A., et al. Moyamoya Disease Explored Through RNF213. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-2711-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2711-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2710-9

  • Online ISBN: 978-981-10-2711-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics