Advertisement

Casting Routes for the Production of Al and Mg Based Nanocomposites

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

As previously described in Chap.  2, the different production techniques for metal matrix nanocomposites (MMNCs) may be classified depending on the matrix state: liquid, solid or semi-solid. In comparison to other methods, liquid and semi-solid state MMNCs processing techniques are particularly attractive since they are potentially scalable to industrial level for the high volume production of near-net shape components. Nevertheless, such methods pose critical issues related to the low wettability of nanosized particles, generally leading to clusterization and high casting defects content. In this chapter, the main liquid and semi-solid casting routes (stir casting, compocasting, ultrasonic assisted casting and disintegrated melt deposition, DMD) will be described; the results of recent and relevant case studies on Al and Mg based nanocomposites will be summarized and discussed, by highlighting the main drawbacks of such processes.

Keywords

Ultrasonic Vibration Friction Stir Processing A356 Alloy Al2O3 Nanoparticles Ultrasonic Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Su, H., Gao, W., Feng, Z., Lu, Z.: Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012). doi: 10.1016/j.matdes.2011.11.064 CrossRefGoogle Scholar
  2. 2.
    Su, H., Gao, W., Zhang, H., et al.: Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater. Sci. Technol. 28, 178–183 (2012). doi: 10.1179/1743284711Y.0000000009 CrossRefGoogle Scholar
  3. 3.
    Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518, 61–64 (2009). doi: 10.1016/j.msea.2009.04.014 CrossRefGoogle Scholar
  4. 4.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 93, 1–7 (1999)CrossRefGoogle Scholar
  5. 5.
    Sajjadi, S.A., Ezatpour, H.R., Beygi, H.: Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng., A 528, 8765–8771 (2011). doi: 10.1016/j.msea.2011.08.052 CrossRefGoogle Scholar
  6. 6.
    Yang, Y., Lan, J., Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng., A 380, 378–383 (2004). doi: 10.1016/j.msea.2004.03.073 CrossRefGoogle Scholar
  7. 7.
    Hashim, J., Looney, L., Hashmi, M.S.J.: The wettability of SiC particles by molten aluminium alloy. J. Mater. Process. Technol. 119, 324–328 (2001). doi: 10.1016/S0924-0136(01)00975-X CrossRefGoogle Scholar
  8. 8.
    Tahamtan, S., Halvaee, A., Emamy, M., Zabihi, M.S.: Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. Mater. Des. 49, 347–359 (2013). doi: 10.1016/j.matdes.2013.01.032 CrossRefGoogle Scholar
  9. 9.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123, 251–257 (2002)CrossRefGoogle Scholar
  10. 10.
    Cournil, M., Gruy, F., Gardin, P., Saint-Raymond, H.: Modelling of solid particle aggregation dynamics in non-wetting liquid medium. Chem. Eng. Process. Process. Intensif. 45, 586–597 (2006). doi: 10.1016/j.cep.2006.01.003 CrossRefGoogle Scholar
  11. 11.
    Beygi, H., Ezatpour, H.R., Sajjadi, S.A., Zebarjad, S.M.: Microstructure evolution of Al-Al2O3 micro and nano composites fabricated by a modified stir casting route. In: 18th International Conference on Composoties Materials (2011)Google Scholar
  12. 12.
    Hashim, J., Looney, L., Hashmi, M.S.J.: The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 119, 329–335 (2001). doi: 10.1016/S0924-0136(01)00919-0 CrossRefGoogle Scholar
  13. 13.
    Sukumaran, K., Pillai, S.G.K., Pillai, R.M., et al.: The effects of magnesium additions on the structure and properties of Al-7 Si-10 SiCp composites. J. Mater. Sci. 30, 1469–1472 (1995)CrossRefGoogle Scholar
  14. 14.
    Mazahery, A., Ostadshabani, M.: Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J. Compos. Mater. 45, 2579–2586 (2011). doi: 10.1177/0021998311401111 CrossRefGoogle Scholar
  15. 15.
    Oh, S.I., Lim, J.Y., Kim, Y.C., et al.: Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. J. Alloys Compd. 542, 111–117 (2012). doi: 10.1016/j.jallcom.2012.07.029 CrossRefGoogle Scholar
  16. 16.
    Lim, J.-Y., Oh, S.-I., Kim, Y.-C., et al.: Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater. Sci. Eng., A 556, 337–342 (2012). doi: 10.1016/j.msea.2012.06.096 CrossRefGoogle Scholar
  17. 17.
    So, K.P., Jeong, J.C., Park, J.G., et al.: SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos. Sci. Technol. 74, 6–13 (2013). doi: 10.1016/j.compscitech.2012.09.014 CrossRefGoogle Scholar
  18. 18.
    Dehghan Hamedan, A., Shahmiri, M.: Production of A356–1 wt% SiC nanocomposite by the modified stir casting method. Mater. Sci. Eng., A 556, 921–926 (2012). doi: 10.1016/j.msea.2012.07.093 CrossRefGoogle Scholar
  19. 19.
    Mazahery, A., Shabani, M.O.: Characterization of cast A356 alloy reinforced with nano SiC composites. Trans. Nonferrous Met. Soc. China 22, 275–280 (2012). doi: 10.1016/S1003-6326(11)61171-0 CrossRefGoogle Scholar
  20. 20.
    Karbalaei Akbari, M., Mirzaee, O., Baharvandi, H.R.: Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013). doi: 10.1016/j.matdes.2012.10.008 CrossRefGoogle Scholar
  21. 21.
    Kawabe, A., Oshida, A., Toda, T., Hiroyuki, Kobayashi: Fabrication process of metal matrix composite with nano-size SiC particle produced by vortex method. J. Japan Inst. Light Met. 49, 149–154 (1999)CrossRefGoogle Scholar
  22. 22.
    Yar, A., Montazerian, M., Abdizadeh, H., Baharvandi, H.R.: Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J. Alloys Compd. 484, 400–404 (2009). doi: 10.1016/j.jallcom.2009.04.117 CrossRefGoogle Scholar
  23. 23.
    Abdizadeh, H., Ebrahimifard, R., Baghchesara, M.A.: Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos. Part B 56, 217–221 (2014). doi: 10.1016/j.compositesb.2013.08.023 CrossRefGoogle Scholar
  24. 24.
    Pai, B.C., Ramani, G., Pillai, R.M., Satyanarayana, K.G.: Role of magnesium in cast aluminium alloy matrix composites. J. Mater. Sci. 30, 1903–1911 (1995)CrossRefGoogle Scholar
  25. 25.
    Mcleod, A.D., Gabryel, C.M.: Kinetics of the growth of spinel, MgAl204, on alumina particulate in aluminum alloys containing magnesium. Metall. Trans. A 23A, 1279–1283 (1992)CrossRefGoogle Scholar
  26. 26.
    Schultz, B.F., Ferguson, J.B., Rohatgi, P.K.: Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng., A 530, 87–97 (2011). doi: 10.1016/j.msea.2011.09.042 CrossRefGoogle Scholar
  27. 27.
    Mazahery, A., Shabani, M.: Mechanical properties of A356 matrix composites reinforced with nano SiC particles. Strength Mater. 44, 686–692 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhou, W., Xu, Z.M.: Casting of SiC reinforced metal matrix composites. J. Mater. Process. Technol. 63, 358–363 (1997)CrossRefGoogle Scholar
  29. 29.
    Karbalaei Akbari, M., Baharvandi, H.R., Mirzaee, O.: Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Compos. Part B Eng. 55, 426–432 (2013). doi: 10.1016/j.compositesb.2013.07.008 CrossRefGoogle Scholar
  30. 30.
    Laurent, V., Rado, C., Eustathopoulos, N.: Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 205 (1996)Google Scholar
  31. 31.
    Landry, K., Kalogeropoulou, S., Eustathopoulos, N.: Wettability of carbon by aluminum and aluminum alloys. Mater. Sci. Eng., A 254, 99–111 (1998). doi: 10.1016/S0921-5093(98)00759-X CrossRefGoogle Scholar
  32. 32.
    Li, Q., Rottmair, C.A., Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos. Sci. Technol. 70, 2242–2247 (2010). doi: 10.1016/j.compscitech.2010.05.024
  33. 33.
    Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng., A 519, 198–203 (2009). doi: 10.1016/j.msea.2009.05.001 CrossRefGoogle Scholar
  34. 34.
    Li, Q., Viereckl, A., Rottmair, C.A., Singer, R.F.: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 1193–1199 (2009). doi: 10.1016/j.compscitech.2009.02.020
  35. 35.
    Chen, L.Y., Peng, J.Y., Xu, J.Q., et al.: Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr. Mater. 69, 634–637 (2013). doi: 10.1016/j.scriptamat.2013.07.016 CrossRefGoogle Scholar
  36. 36.
    Kamali Ardakani, M.R., Khorsand, S., Amirkhanlou, S., Javad Nayyeri, M.: Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite. Mater. Sci. Eng., A 592, 121–127 (2014). doi: 10.1016/j.msea.2013.11.006 CrossRefGoogle Scholar
  37. 37.
    Abbasipour, B., Niroumand, B., Monir Vaghefi, S.M.: Compocasting of A356-CNT composite. Trans. Nonferrous Met. Soc. China 20, 1561–1566 (2010). doi: 10.1016/S1003-6326(09)60339-3 CrossRefGoogle Scholar
  38. 38.
    Cao, G., Choi, H., Oportus, J., et al.: Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater. Sci. Eng., A 494, 127–131 (2008). doi: 10.1016/j.msea.2008.04.070 CrossRefGoogle Scholar
  39. 39.
    Donthamsetty, S., Damera, N.R., Jain, P.K.: Ultrasonic cavitation assisted fabrication and characterization of A356 metal matrix nanocomposite reiforced with Sic, B4C, CNTs. AIJSTPME 2, 27–34 (2009)Google Scholar
  40. 40.
    Shen, M.J., Wang, X.J., Li, C.D., et al.: Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater. Des. 52, 1011–1017 (2013). doi: 10.1016/j.matdes.2013.05.067 CrossRefGoogle Scholar
  41. 41.
    Deng, K., Wang, C., Wang, X., et al.: Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Mater. Des. 38, 110–114 (2012). doi: 10.1016/j.matdes.2012.02.017 CrossRefGoogle Scholar
  42. 42.
    Deng, K.K., Wang, X.J., Wu, Y.W., et al.: Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 543, 158–163 (2012). doi: 10.1016/j.msea.2012.02.064 CrossRefGoogle Scholar
  43. 43.
    Deng, K.K., Wu, K., Wu, Y.W., et al.: Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. J. Alloys Compd. 504, 542–547 (2010). doi: 10.1016/j.jallcom.2010.05.159 CrossRefGoogle Scholar
  44. 44.
    Nie, K.B., Wang, X.J., Wu, K., et al.: Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J. Alloys Compd. 509, 8664–8669 (2011). doi: 10.1016/j.jallcom.2011.06.091 CrossRefGoogle Scholar
  45. 45.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J. Alloys Compd. 512, 355–360 (2012). doi: 10.1016/j.jallcom.2011.09.099 CrossRefGoogle Scholar
  46. 46.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater. Des. 36, 199–205 (2012). doi: 10.1016/j.matdes.2011.11.020 CrossRefGoogle Scholar
  47. 47.
    Kandemir, S., Yalamanchili, A., Atkinson, H.V.: Production of aluminium matrix nanocomposite feedstock for thixoforming by an ultrasonic method. Key Eng. Mater. 504–506, 339–344 (2012). doi: 10.4028/www.scientific.net/KEM.504-506.339 CrossRefGoogle Scholar
  48. 48.
    Abbasipour, B., Niroumand, B., Monirvaghefi, S.: Mechanical properties of A356-CNT cast nanocomposite. Suppl. Proc. Mater. Process. Interfaces 1, 733–740 (2012)CrossRefGoogle Scholar
  49. 49.
    El-Mahallawi, I., Abdelkader, H., Yousef, L., et al.: Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys. Mater. Sci. Eng. A 556, 76–87 (2012)CrossRefGoogle Scholar
  50. 50.
    Choi, H., Cho, W., Li, X.C., et al.: Scale-up ultrasonic processing system for batch production of metallic nanocomposites. In: AFS Proceedings, pp. 1–7 (2013)Google Scholar
  51. 51.
    Sajjadi, S.A., Torabi Parizi, M., Ezatpour, H.R., Sedghi, A.: Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J. Alloys Compd. 511, 226–231 (2012). doi: 10.1016/j.jallcom.2011.08.105 CrossRefGoogle Scholar
  52. 52.
    Sajjadi, S.A., Ezatpour, H.R., Torabi Parizi, M. (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater. Des. 34, 106–111. doi: 10.1016/j.matdes.2011.07.037
  53. 53.
    Xu, J.Q., Chen, L.Y., Choi, H., Li, X.C.: Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys.: Condens. Matter 24, 255304 (2012). doi: 10.1088/0953-8984/24/25/255304 Google Scholar
  54. 54.
    Suslick, K.S.: Ultrasound: Its Chemical, Physical, and Biological Effects. VHC, New York (1988)Google Scholar
  55. 55.
    Abramov, O.: Ultrasound in Liquid and Solid Metals. CRC Press, Boca Raton, FL (1994)Google Scholar
  56. 56.
    Ma, L., Chen, F., Shu, G.: Preparation of fine particulate reinforced metal matrix composites by high intensity ultrasonic treatment. J. Mater. Sci. Lett. 14, 649–650 (1995). doi: 10.1007/BF00586167 CrossRefGoogle Scholar
  57. 57.
    Suslick, K.S., Didenko, Y., Fang, M.M., et al.: Acoustic cavitation and its chemical consequences. Phil. Trans. R. Soc. Lond. A 357, 335–353 (1999)Google Scholar
  58. 58.
    Lan, J., Yang, Y., Li, X.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng., A 386, 284–290 (2004). doi: 10.1016/j.msea.2004.07.024 CrossRefGoogle Scholar
  59. 59.
    Li, X., Yang, Y., Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 39, 3211–3212 (2004). doi: 10.1023/B:JMSC.0000025862.23609.6f CrossRefGoogle Scholar
  60. 60.
    Yang, Y., Li, X.: Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. J. Manuf. Sci. Eng. 129, 252 (2007). doi: 10.1115/1.2194064 CrossRefGoogle Scholar
  61. 61.
    Mula, S., Padhi, P., Panigrahi, S.C., et al.: On structure and mechanical properties of ultrasonically cast Al–2 % Al2O3 nanocomposite. Mater. Res. Bull. 44, 1154–1160 (2009). doi: 10.1016/j.materresbull.2008.09.040 CrossRefGoogle Scholar
  62. 62.
    Mula, S., Pabi, S.K., Koch, C.C., et al.: Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites. Mater. Sci. Eng., A 558, 485–491 (2012). doi: 10.1016/j.msea.2012.08.032 CrossRefGoogle Scholar
  63. 63.
    Choi, H., Jones, M., Konishi, H., Li, X.: Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3 Mg Alloy. Metall. Mater. Trans. A 43, 738–746 (2011). doi: 10.1007/s11661-011-0905-7 CrossRefGoogle Scholar
  64. 64.
    Narasimha Murthy, I., Venkata Rao, D., Babu Rao, J.: Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method. Mater. Des. 35, 55–65 (2012). doi: 10.1016/j.matdes.2011.10.019 CrossRefGoogle Scholar
  65. 65.
    Liu, X., Osawa, Y., Takamori, S., Mukai, T.: Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. Mater. Lett. 62, 2872–2875 (2008). doi: 10.1016/j.matlet.2008.01.063
  66. 66.
    Cao, G., Konishi, H., Li, X.: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Eng., A 486, 357–362 (2008). doi: 10.1016/j.msea.2007.09.054 CrossRefGoogle Scholar
  67. 67.
    Cao, G., Choi, H., Konishi, H., et al.: Mg–6Zn/1.5 % SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci. 43, 5521–5526 (2008). doi: 10.1007/s10853-008-2785-9 CrossRefGoogle Scholar
  68. 68.
    Cao, G., Kobliska, J., Konishi, H., Li, X.: Tensile properties and microstructure of SiC nanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-based solidification processing. Metall. Mater. Trans. A 39, 880–886 (2008). doi: 10.1007/s11661-007-9453-6 CrossRefGoogle Scholar
  69. 69.
    Cicco, M., Konishi, H., Cao, G., et al.: Strong, ductile magnesium-zinc nanocomposites. Metall. Mater. Trans. A 40A, 3038–3045 (2009). doi: 10.1007/s11661-009-0013-0 CrossRefGoogle Scholar
  70. 70.
    Nie, K.B., Wang, X.J., Hu, X.S., et al.: Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater. Sci. Eng., A 528, 5278–5282 (2011). doi: 10.1016/j.msea.2011.03.061 CrossRefGoogle Scholar
  71. 71.
    Nie, K.B., Wang, X.J., Wu, K., et al.: Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng., A 540, 123–129 (2012). doi: 10.1016/j.msea.2012.01.112 CrossRefGoogle Scholar
  72. 72.
    Erman, A., Groza, J., Li, X., et al.: Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater. Sci. Eng., A 558, 39–43 (2012). doi: 10.1016/j.msea.2012.07.048 CrossRefGoogle Scholar
  73. 73.
    Zhou, X., Su, D., Wu, C., Liu, L.: Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J. Nanomater. 2012, 1–7 (2012). doi: 10.1155/2012/851862 Google Scholar
  74. 74.
    Choi, H., Alba-Baena, N., Nimityongskul, S., et al.: Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting. J. Mater. Sci. 46, 2991–2997 (2011). doi: 10.1007/s10853-010-5176-y CrossRefGoogle Scholar
  75. 75.
    Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011). doi: 10.1016/j.pmatsci.2011.03.003 CrossRefGoogle Scholar
  76. 76.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi: 10.1038/nmat1849 CrossRefGoogle Scholar
  77. 77.
    Chen, L.-Y., Konishi, H., Fehrenbacher, A., et al.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67, 29–32 (2012). doi: 10.1016/j.scriptamat.2012.03.013 CrossRefGoogle Scholar
  78. 78.
    Liu, S., Gao, F., Zhang, Q., et al.: Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans. Nonferrous Met. Soc. China 20, 1222–1227 (2010). doi: 10.1016/S1003-6326(09)60282-X CrossRefGoogle Scholar
  79. 79.
    Gupta, M., Sharon, N.M.L.: Magnesium, magnesium alloys, and magnesium composites. Wiley (2011)Google Scholar
  80. 80.
    Sun, H., Li, C., Xie, Y., Fang, W.: Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment. Trans. Nonferrous Met. Soc. China 22, s445–s449 (2012). doi: 10.1016/S1003-6326(12)61744-0 CrossRefGoogle Scholar
  81. 81.
    Hassan, S.F., Gupta, M.: Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall. Mater. Trans. A 36, 2253–2258 (2005)CrossRefGoogle Scholar
  82. 82.
    Hassan, S.F., Gupta, M.: Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 419, 84–90 (2006). doi: 10.1016/j.jallcom.2005.10.005 CrossRefGoogle Scholar
  83. 83.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng., A 423, 153–156 (2006). doi: 10.1016/j.msea.2005.10.071 CrossRefGoogle Scholar
  84. 84.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432–1439 (2008). doi: 10.1016/j.compscitech.2007.10.057 CrossRefGoogle Scholar
  85. 85.
    Hassan, S.F., Gupta, M.: Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J. Alloys Compd. 429, 176–183 (2007). doi: 10.1016/j.jallcom.2006.04.033 CrossRefGoogle Scholar
  86. 86.
    Hassan, S.F., Gupta, M.: Effect of Nano-ZrO2 particulates reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Compos. Mater. 41, 2533–2543 (2007). doi: 10.1177/0021998307074187 CrossRefGoogle Scholar
  87. 87.
    Goh, C., Wei, J., Lee, L., Gupta, M.: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 55, 5115–5121 (2007). doi: 10.1016/j.actamat.2007.05.032 CrossRefGoogle Scholar
  88. 88.
    Nguyen, Q.B., Gupta, M.: Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloys Compd. 459, 244–250 (2008). doi: 10.1016/j.jallcom.2007.05.038 CrossRefGoogle Scholar
  89. 89.
    Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater. Sci. Eng., A 527, 162–168 (2009). doi: 10.1016/j.msea.2009.07.054 CrossRefGoogle Scholar
  90. 90.
    Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J. Nanosci. Nanotechnol. 10, 956–964 (2010). doi: 10.1166/jnn.2010.1809 CrossRefGoogle Scholar
  91. 91.
    Nguyen, Q.B., Gupta, M.: Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca. J. Compos. Mater. 43, 5–17 (2009). doi: 10.1177/0021998308096333 CrossRefGoogle Scholar
  92. 92.
    Shanthi, M., Nguyen, Q.B., Gupta, M.: Sliding wear behaviour of calcium containing AZ31B/Al2O3 nanocomposites. Wear 269, 473–479 (2010)CrossRefGoogle Scholar
  93. 93.
    Nguyen, Q.B., Gupta, M.: Enhancing mechanical response of AZ31B using Cu + nano-Al2O3 addition. Mater. Sci. Eng., A 527, 1411–1416 (2010). doi: 10.1016/j.msea.2009.11.002 CrossRefGoogle Scholar
  94. 94.
    Hassan, S.F., Gupta, M.: Development of novel magnesium-copper based composite with improved mechanical properties. Mater. Res. Bull. 37, 377–389 (2002)CrossRefGoogle Scholar
  95. 95.
    Nguyen, Q., Tun, K., Chan, J., et al.: Simultaneous effect of nano-Al2O3 and micrometre Cu particulates on microstructure and mechanical properties of magnesium alloy AZ31. Mater. Sci. Technol. 28, 227–233 (2012). doi: 10.1179/1743284711Y.0000000023 CrossRefGoogle Scholar
  96. 96.
    Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L.: Binary alloy phase diagrams. 3, 2526 (1990)Google Scholar
  97. 97.
    Nguyen, Q.B., Tun, K.S., Chan, J., et al.: Enhancing strength and hardness of AZ31B through simultaneous addition of nickel and nano-Al2O3 particulates. Mater. Sci. Eng., A 528, 888–894 (2011). doi: 10.1016/j.msea.2010.10.021 CrossRefGoogle Scholar
  98. 98.
    Alam, M.E., Hamouda, A.M.S., Nguyen, Q.B., Gupta, M.: Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca. J. Alloys Compd. 574, 565–572 (2013). doi: 10.1016/j.jallcom.2013.04.207 CrossRefGoogle Scholar
  99. 99.
    Alam, M.E., Hamouda, A.M.S., Gupta, M.: Microstructure, thermal and mechanical response of AZ51/Al2O3 nanocomposite with 2wt.% Ca addition. Mater. Des. 50, 1–6 (2013). doi: 10.1016/j.matdes.2013.01.057 CrossRefGoogle Scholar
  100. 100.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91. J. Alloys Compd. 509, 7572–7578 (2011). doi: 10.1016/j.jallcom.2011.04.120 CrossRefGoogle Scholar
  101. 101.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles. Mater. Sci. Eng., A 528, 6545–6551 (2011). doi: 10.1016/j.msea.2011.05.003 CrossRefGoogle Scholar
  102. 102.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: TiC nanoparticle addition to enhance the mechanical response of hybrid magnesium alloy. J. Nanotechnol 2012, 1–9 (2012). doi: 10.1155/2012/401574 Google Scholar
  103. 103.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The overall effects of AlN nanoparticle addition to hybrid magnesium alloy AZ91/ZK60A. J. Nanotechnol. 2012, 1–8 (2012). doi: 10.1155/2012/687306 Google Scholar
  104. 104.
    Jayaramanavar, P., Paramsothy, M., Balaji, A., Gupta, M.: Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J. Mater. Sci. 45, 1170–1178 (2009). doi: 10.1007/s10853-009-4059-6 CrossRefGoogle Scholar
  105. 105.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement. J. Nanomater. 2011, 1–9 (2011). doi: 10.1155/2011/642980 CrossRefGoogle Scholar
  106. 106.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles. Compos. Part A 42, 2093–2100 (2011). doi: 10.1016/j.compositesa.2011.09.019 CrossRefGoogle Scholar
  107. 107.
    Hassan, S.F., Gupta, M.: Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246–251 (2002)CrossRefGoogle Scholar
  108. 108.
    Umeda, J., Kawakami, M., Kondoh, K., et al.: Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649–657 (2010). doi: 10.1016/j.matchemphys.2010.05.033 CrossRefGoogle Scholar
  109. 109.
    Sankaranarayanan, S., Jayalakshmi, S., Gupta, M.: Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti+n–Al2O3) composites. J. Alloys Compd. 509, 7229–7237 (2011). doi: 10.1016/j.jallcom.2011.04.083 CrossRefGoogle Scholar
  110. 110.
    Sankaranarayanan, S., Sabat, R.K., Jayalakshmi, S., et al.: Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite. J. Alloys Compd. 575, 207–217 (2013). doi: 10.1016/j.jallcom.2013.04.095 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations