Skip to main content

Casting Routes for the Production of Al and Mg Based Nanocomposites

  • Chapter
  • First Online:
Aluminum and Magnesium Metal Matrix Nanocomposites

Abstract

As previously described in Chap. 2, the different production techniques for metal matrix nanocomposites (MMNCs) may be classified depending on the matrix state: liquid, solid or semi-solid. In comparison to other methods, liquid and semi-solid state MMNCs processing techniques are particularly attractive since they are potentially scalable to industrial level for the high volume production of near-net shape components. Nevertheless, such methods pose critical issues related to the low wettability of nanosized particles, generally leading to clusterization and high casting defects content. In this chapter, the main liquid and semi-solid casting routes (stir casting, compocasting, ultrasonic assisted casting and disintegrated melt deposition, DMD) will be described; the results of recent and relevant case studies on Al and Mg based nanocomposites will be summarized and discussed, by highlighting the main drawbacks of such processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, H., Gao, W., Feng, Z., Lu, Z.: Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 36, 590–596 (2012). doi:10.1016/j.matdes.2011.11.064

    Article  Google Scholar 

  2. Su, H., Gao, W., Zhang, H., et al.: Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater. Sci. Technol. 28, 178–183 (2012). doi:10.1179/1743284711Y.0000000009

    Article  Google Scholar 

  3. Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518, 61–64 (2009). doi:10.1016/j.msea.2009.04.014

    Article  Google Scholar 

  4. Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 93, 1–7 (1999)

    Article  Google Scholar 

  5. Sajjadi, S.A., Ezatpour, H.R., Beygi, H.: Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng., A 528, 8765–8771 (2011). doi:10.1016/j.msea.2011.08.052

    Article  Google Scholar 

  6. Yang, Y., Lan, J., Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater. Sci. Eng., A 380, 378–383 (2004). doi:10.1016/j.msea.2004.03.073

    Article  Google Scholar 

  7. Hashim, J., Looney, L., Hashmi, M.S.J.: The wettability of SiC particles by molten aluminium alloy. J. Mater. Process. Technol. 119, 324–328 (2001). doi:10.1016/S0924-0136(01)00975-X

    Article  Google Scholar 

  8. Tahamtan, S., Halvaee, A., Emamy, M., Zabihi, M.S.: Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. Mater. Des. 49, 347–359 (2013). doi:10.1016/j.matdes.2013.01.032

    Article  Google Scholar 

  9. Hashim, J., Looney, L., Hashmi, M.S.J.: Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123, 251–257 (2002)

    Article  Google Scholar 

  10. Cournil, M., Gruy, F., Gardin, P., Saint-Raymond, H.: Modelling of solid particle aggregation dynamics in non-wetting liquid medium. Chem. Eng. Process. Process. Intensif. 45, 586–597 (2006). doi:10.1016/j.cep.2006.01.003

    Article  Google Scholar 

  11. Beygi, H., Ezatpour, H.R., Sajjadi, S.A., Zebarjad, S.M.: Microstructure evolution of Al-Al2O3 micro and nano composites fabricated by a modified stir casting route. In: 18th International Conference on Composoties Materials (2011)

    Google Scholar 

  12. Hashim, J., Looney, L., Hashmi, M.S.J.: The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 119, 329–335 (2001). doi:10.1016/S0924-0136(01)00919-0

    Article  Google Scholar 

  13. Sukumaran, K., Pillai, S.G.K., Pillai, R.M., et al.: The effects of magnesium additions on the structure and properties of Al-7 Si-10 SiCp composites. J. Mater. Sci. 30, 1469–1472 (1995)

    Article  Google Scholar 

  14. Mazahery, A., Ostadshabani, M.: Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J. Compos. Mater. 45, 2579–2586 (2011). doi:10.1177/0021998311401111

    Article  Google Scholar 

  15. Oh, S.I., Lim, J.Y., Kim, Y.C., et al.: Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. J. Alloys Compd. 542, 111–117 (2012). doi:10.1016/j.jallcom.2012.07.029

    Article  Google Scholar 

  16. Lim, J.-Y., Oh, S.-I., Kim, Y.-C., et al.: Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater. Sci. Eng., A 556, 337–342 (2012). doi:10.1016/j.msea.2012.06.096

    Article  Google Scholar 

  17. So, K.P., Jeong, J.C., Park, J.G., et al.: SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos. Sci. Technol. 74, 6–13 (2013). doi:10.1016/j.compscitech.2012.09.014

    Article  Google Scholar 

  18. Dehghan Hamedan, A., Shahmiri, M.: Production of A356–1 wt% SiC nanocomposite by the modified stir casting method. Mater. Sci. Eng., A 556, 921–926 (2012). doi:10.1016/j.msea.2012.07.093

    Article  Google Scholar 

  19. Mazahery, A., Shabani, M.O.: Characterization of cast A356 alloy reinforced with nano SiC composites. Trans. Nonferrous Met. Soc. China 22, 275–280 (2012). doi:10.1016/S1003-6326(11)61171-0

    Article  Google Scholar 

  20. Karbalaei Akbari, M., Mirzaee, O., Baharvandi, H.R.: Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013). doi:10.1016/j.matdes.2012.10.008

    Article  Google Scholar 

  21. Kawabe, A., Oshida, A., Toda, T., Hiroyuki, Kobayashi: Fabrication process of metal matrix composite with nano-size SiC particle produced by vortex method. J. Japan Inst. Light Met. 49, 149–154 (1999)

    Article  Google Scholar 

  22. Yar, A., Montazerian, M., Abdizadeh, H., Baharvandi, H.R.: Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J. Alloys Compd. 484, 400–404 (2009). doi:10.1016/j.jallcom.2009.04.117

    Article  Google Scholar 

  23. Abdizadeh, H., Ebrahimifard, R., Baghchesara, M.A.: Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: a comparative study. Compos. Part B 56, 217–221 (2014). doi:10.1016/j.compositesb.2013.08.023

    Article  Google Scholar 

  24. Pai, B.C., Ramani, G., Pillai, R.M., Satyanarayana, K.G.: Role of magnesium in cast aluminium alloy matrix composites. J. Mater. Sci. 30, 1903–1911 (1995)

    Article  Google Scholar 

  25. Mcleod, A.D., Gabryel, C.M.: Kinetics of the growth of spinel, MgAl204, on alumina particulate in aluminum alloys containing magnesium. Metall. Trans. A 23A, 1279–1283 (1992)

    Article  Google Scholar 

  26. Schultz, B.F., Ferguson, J.B., Rohatgi, P.K.: Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng., A 530, 87–97 (2011). doi:10.1016/j.msea.2011.09.042

    Article  Google Scholar 

  27. Mazahery, A., Shabani, M.: Mechanical properties of A356 matrix composites reinforced with nano SiC particles. Strength Mater. 44, 686–692 (2012)

    Article  Google Scholar 

  28. Zhou, W., Xu, Z.M.: Casting of SiC reinforced metal matrix composites. J. Mater. Process. Technol. 63, 358–363 (1997)

    Article  Google Scholar 

  29. Karbalaei Akbari, M., Baharvandi, H.R., Mirzaee, O.: Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Compos. Part B Eng. 55, 426–432 (2013). doi:10.1016/j.compositesb.2013.07.008

    Article  Google Scholar 

  30. Laurent, V., Rado, C., Eustathopoulos, N.: Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A 205 (1996)

    Google Scholar 

  31. Landry, K., Kalogeropoulou, S., Eustathopoulos, N.: Wettability of carbon by aluminum and aluminum alloys. Mater. Sci. Eng., A 254, 99–111 (1998). doi:10.1016/S0921-5093(98)00759-X

    Article  Google Scholar 

  32. Li, Q., Rottmair, C.A., Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos. Sci. Technol. 70, 2242–2247 (2010). doi:10.1016/j.compscitech.2010.05.024

  33. Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng., A 519, 198–203 (2009). doi:10.1016/j.msea.2009.05.001

    Article  Google Scholar 

  34. Li, Q., Viereckl, A., Rottmair, C.A., Singer, R.F.: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 1193–1199 (2009). doi:10.1016/j.compscitech.2009.02.020

  35. Chen, L.Y., Peng, J.Y., Xu, J.Q., et al.: Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr. Mater. 69, 634–637 (2013). doi:10.1016/j.scriptamat.2013.07.016

    Article  Google Scholar 

  36. Kamali Ardakani, M.R., Khorsand, S., Amirkhanlou, S., Javad Nayyeri, M.: Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite. Mater. Sci. Eng., A 592, 121–127 (2014). doi:10.1016/j.msea.2013.11.006

    Article  Google Scholar 

  37. Abbasipour, B., Niroumand, B., Monir Vaghefi, S.M.: Compocasting of A356-CNT composite. Trans. Nonferrous Met. Soc. China 20, 1561–1566 (2010). doi:10.1016/S1003-6326(09)60339-3

    Article  Google Scholar 

  38. Cao, G., Choi, H., Oportus, J., et al.: Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater. Sci. Eng., A 494, 127–131 (2008). doi:10.1016/j.msea.2008.04.070

    Article  Google Scholar 

  39. Donthamsetty, S., Damera, N.R., Jain, P.K.: Ultrasonic cavitation assisted fabrication and characterization of A356 metal matrix nanocomposite reiforced with Sic, B4C, CNTs. AIJSTPME 2, 27–34 (2009)

    Google Scholar 

  40. Shen, M.J., Wang, X.J., Li, C.D., et al.: Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater. Des. 52, 1011–1017 (2013). doi:10.1016/j.matdes.2013.05.067

    Article  Google Scholar 

  41. Deng, K., Wang, C., Wang, X., et al.: Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Mater. Des. 38, 110–114 (2012). doi:10.1016/j.matdes.2012.02.017

    Article  Google Scholar 

  42. Deng, K.K., Wang, X.J., Wu, Y.W., et al.: Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater. Sci. Eng., A 543, 158–163 (2012). doi:10.1016/j.msea.2012.02.064

    Article  Google Scholar 

  43. Deng, K.K., Wu, K., Wu, Y.W., et al.: Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. J. Alloys Compd. 504, 542–547 (2010). doi:10.1016/j.jallcom.2010.05.159

    Article  Google Scholar 

  44. Nie, K.B., Wang, X.J., Wu, K., et al.: Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J. Alloys Compd. 509, 8664–8669 (2011). doi:10.1016/j.jallcom.2011.06.091

    Article  Google Scholar 

  45. Nie, K.B., Wang, X.J., Xu, L., et al.: Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J. Alloys Compd. 512, 355–360 (2012). doi:10.1016/j.jallcom.2011.09.099

    Article  Google Scholar 

  46. Nie, K.B., Wang, X.J., Xu, L., et al.: Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater. Des. 36, 199–205 (2012). doi:10.1016/j.matdes.2011.11.020

    Article  Google Scholar 

  47. Kandemir, S., Yalamanchili, A., Atkinson, H.V.: Production of aluminium matrix nanocomposite feedstock for thixoforming by an ultrasonic method. Key Eng. Mater. 504–506, 339–344 (2012). doi:10.4028/www.scientific.net/KEM.504-506.339

    Article  Google Scholar 

  48. Abbasipour, B., Niroumand, B., Monirvaghefi, S.: Mechanical properties of A356-CNT cast nanocomposite. Suppl. Proc. Mater. Process. Interfaces 1, 733–740 (2012)

    Article  Google Scholar 

  49. El-Mahallawi, I., Abdelkader, H., Yousef, L., et al.: Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic Alloys. Mater. Sci. Eng. A 556, 76–87 (2012)

    Article  Google Scholar 

  50. Choi, H., Cho, W., Li, X.C., et al.: Scale-up ultrasonic processing system for batch production of metallic nanocomposites. In: AFS Proceedings, pp. 1–7 (2013)

    Google Scholar 

  51. Sajjadi, S.A., Torabi Parizi, M., Ezatpour, H.R., Sedghi, A.: Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J. Alloys Compd. 511, 226–231 (2012). doi:10.1016/j.jallcom.2011.08.105

    Article  Google Scholar 

  52. Sajjadi, S.A., Ezatpour, H.R., Torabi Parizi, M. (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater. Des. 34, 106–111. doi:10.1016/j.matdes.2011.07.037

  53. Xu, J.Q., Chen, L.Y., Choi, H., Li, X.C.: Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J. Phys.: Condens. Matter 24, 255304 (2012). doi:10.1088/0953-8984/24/25/255304

    Google Scholar 

  54. Suslick, K.S.: Ultrasound: Its Chemical, Physical, and Biological Effects. VHC, New York (1988)

    Google Scholar 

  55. Abramov, O.: Ultrasound in Liquid and Solid Metals. CRC Press, Boca Raton, FL (1994)

    Google Scholar 

  56. Ma, L., Chen, F., Shu, G.: Preparation of fine particulate reinforced metal matrix composites by high intensity ultrasonic treatment. J. Mater. Sci. Lett. 14, 649–650 (1995). doi:10.1007/BF00586167

    Article  Google Scholar 

  57. Suslick, K.S., Didenko, Y., Fang, M.M., et al.: Acoustic cavitation and its chemical consequences. Phil. Trans. R. Soc. Lond. A 357, 335–353 (1999)

    Google Scholar 

  58. Lan, J., Yang, Y., Li, X.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater. Sci. Eng., A 386, 284–290 (2004). doi:10.1016/j.msea.2004.07.024

    Article  Google Scholar 

  59. Li, X., Yang, Y., Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 39, 3211–3212 (2004). doi:10.1023/B:JMSC.0000025862.23609.6f

    Article  Google Scholar 

  60. Yang, Y., Li, X.: Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. J. Manuf. Sci. Eng. 129, 252 (2007). doi:10.1115/1.2194064

    Article  Google Scholar 

  61. Mula, S., Padhi, P., Panigrahi, S.C., et al.: On structure and mechanical properties of ultrasonically cast Al–2 % Al2O3 nanocomposite. Mater. Res. Bull. 44, 1154–1160 (2009). doi:10.1016/j.materresbull.2008.09.040

    Article  Google Scholar 

  62. Mula, S., Pabi, S.K., Koch, C.C., et al.: Workability and mechanical properties of ultrasonically cast Al–Al2O3 nanocomposites. Mater. Sci. Eng., A 558, 485–491 (2012). doi:10.1016/j.msea.2012.08.032

    Article  Google Scholar 

  63. Choi, H., Jones, M., Konishi, H., Li, X.: Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3 Mg Alloy. Metall. Mater. Trans. A 43, 738–746 (2011). doi:10.1007/s11661-011-0905-7

    Article  Google Scholar 

  64. Narasimha Murthy, I., Venkata Rao, D., Babu Rao, J.: Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method. Mater. Des. 35, 55–65 (2012). doi:10.1016/j.matdes.2011.10.019

    Article  Google Scholar 

  65. Liu, X., Osawa, Y., Takamori, S., Mukai, T.: Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification. Mater. Lett. 62, 2872–2875 (2008). doi:10.1016/j.matlet.2008.01.063

  66. Cao, G., Konishi, H., Li, X.: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Eng., A 486, 357–362 (2008). doi:10.1016/j.msea.2007.09.054

    Article  Google Scholar 

  67. Cao, G., Choi, H., Konishi, H., et al.: Mg–6Zn/1.5 % SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci. 43, 5521–5526 (2008). doi:10.1007/s10853-008-2785-9

    Article  Google Scholar 

  68. Cao, G., Kobliska, J., Konishi, H., Li, X.: Tensile properties and microstructure of SiC nanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-based solidification processing. Metall. Mater. Trans. A 39, 880–886 (2008). doi:10.1007/s11661-007-9453-6

    Article  Google Scholar 

  69. Cicco, M., Konishi, H., Cao, G., et al.: Strong, ductile magnesium-zinc nanocomposites. Metall. Mater. Trans. A 40A, 3038–3045 (2009). doi:10.1007/s11661-009-0013-0

    Article  Google Scholar 

  70. Nie, K.B., Wang, X.J., Hu, X.S., et al.: Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater. Sci. Eng., A 528, 5278–5282 (2011). doi:10.1016/j.msea.2011.03.061

    Article  Google Scholar 

  71. Nie, K.B., Wang, X.J., Wu, K., et al.: Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng., A 540, 123–129 (2012). doi:10.1016/j.msea.2012.01.112

    Article  Google Scholar 

  72. Erman, A., Groza, J., Li, X., et al.: Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater. Sci. Eng., A 558, 39–43 (2012). doi:10.1016/j.msea.2012.07.048

    Article  Google Scholar 

  73. Zhou, X., Su, D., Wu, C., Liu, L.: Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J. Nanomater. 2012, 1–7 (2012). doi:10.1155/2012/851862

    Google Scholar 

  74. Choi, H., Alba-Baena, N., Nimityongskul, S., et al.: Characterization of hot extruded Mg/SiC nanocomposites fabricated by casting. J. Mater. Sci. 46, 2991–2997 (2011). doi:10.1007/s10853-010-5176-y

    Article  Google Scholar 

  75. Singh, V., Joung, D., Zhai, L., et al.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011). doi:10.1016/j.pmatsci.2011.03.003

    Article  Google Scholar 

  76. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.1038/nmat1849

    Article  Google Scholar 

  77. Chen, L.-Y., Konishi, H., Fehrenbacher, A., et al.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67, 29–32 (2012). doi:10.1016/j.scriptamat.2012.03.013

    Article  Google Scholar 

  78. Liu, S., Gao, F., Zhang, Q., et al.: Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans. Nonferrous Met. Soc. China 20, 1222–1227 (2010). doi:10.1016/S1003-6326(09)60282-X

    Article  Google Scholar 

  79. Gupta, M., Sharon, N.M.L.: Magnesium, magnesium alloys, and magnesium composites. Wiley (2011)

    Google Scholar 

  80. Sun, H., Li, C., Xie, Y., Fang, W.: Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment. Trans. Nonferrous Met. Soc. China 22, s445–s449 (2012). doi:10.1016/S1003-6326(12)61744-0

    Article  Google Scholar 

  81. Hassan, S.F., Gupta, M.: Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall. Mater. Trans. A 36, 2253–2258 (2005)

    Article  Google Scholar 

  82. Hassan, S.F., Gupta, M.: Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 419, 84–90 (2006). doi:10.1016/j.jallcom.2005.10.005

    Article  Google Scholar 

  83. Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng., A 423, 153–156 (2006). doi:10.1016/j.msea.2005.10.071

    Article  Google Scholar 

  84. Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432–1439 (2008). doi:10.1016/j.compscitech.2007.10.057

    Article  Google Scholar 

  85. Hassan, S.F., Gupta, M.: Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J. Alloys Compd. 429, 176–183 (2007). doi:10.1016/j.jallcom.2006.04.033

    Article  Google Scholar 

  86. Hassan, S.F., Gupta, M.: Effect of Nano-ZrO2 particulates reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Compos. Mater. 41, 2533–2543 (2007). doi:10.1177/0021998307074187

    Article  Google Scholar 

  87. Goh, C., Wei, J., Lee, L., Gupta, M.: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater. 55, 5115–5121 (2007). doi:10.1016/j.actamat.2007.05.032

    Article  Google Scholar 

  88. Nguyen, Q.B., Gupta, M.: Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloys Compd. 459, 244–250 (2008). doi:10.1016/j.jallcom.2007.05.038

    Article  Google Scholar 

  89. Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater. Sci. Eng., A 527, 162–168 (2009). doi:10.1016/j.msea.2009.07.054

    Article  Google Scholar 

  90. Paramsothy, M., Hassan, S.F., Srikanth, N., Gupta, M.: Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy AZ31 using carbon nanotubes. J. Nanosci. Nanotechnol. 10, 956–964 (2010). doi:10.1166/jnn.2010.1809

    Article  Google Scholar 

  91. Nguyen, Q.B., Gupta, M.: Microstructure and mechanical characteristics of AZ31B/Al2O3 nanocomposite with addition of Ca. J. Compos. Mater. 43, 5–17 (2009). doi:10.1177/0021998308096333

    Article  Google Scholar 

  92. Shanthi, M., Nguyen, Q.B., Gupta, M.: Sliding wear behaviour of calcium containing AZ31B/Al2O3 nanocomposites. Wear 269, 473–479 (2010)

    Article  Google Scholar 

  93. Nguyen, Q.B., Gupta, M.: Enhancing mechanical response of AZ31B using Cu + nano-Al2O3 addition. Mater. Sci. Eng., A 527, 1411–1416 (2010). doi:10.1016/j.msea.2009.11.002

    Article  Google Scholar 

  94. Hassan, S.F., Gupta, M.: Development of novel magnesium-copper based composite with improved mechanical properties. Mater. Res. Bull. 37, 377–389 (2002)

    Article  Google Scholar 

  95. Nguyen, Q., Tun, K., Chan, J., et al.: Simultaneous effect of nano-Al2O3 and micrometre Cu particulates on microstructure and mechanical properties of magnesium alloy AZ31. Mater. Sci. Technol. 28, 227–233 (2012). doi:10.1179/1743284711Y.0000000023

    Article  Google Scholar 

  96. Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L.: Binary alloy phase diagrams. 3, 2526 (1990)

    Google Scholar 

  97. Nguyen, Q.B., Tun, K.S., Chan, J., et al.: Enhancing strength and hardness of AZ31B through simultaneous addition of nickel and nano-Al2O3 particulates. Mater. Sci. Eng., A 528, 888–894 (2011). doi:10.1016/j.msea.2010.10.021

    Article  Google Scholar 

  98. Alam, M.E., Hamouda, A.M.S., Nguyen, Q.B., Gupta, M.: Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca. J. Alloys Compd. 574, 565–572 (2013). doi:10.1016/j.jallcom.2013.04.207

    Article  Google Scholar 

  99. Alam, M.E., Hamouda, A.M.S., Gupta, M.: Microstructure, thermal and mechanical response of AZ51/Al2O3 nanocomposite with 2wt.% Ca addition. Mater. Des. 50, 1–6 (2013). doi:10.1016/j.matdes.2013.01.057

    Article  Google Scholar 

  100. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91. J. Alloys Compd. 509, 7572–7578 (2011). doi:10.1016/j.jallcom.2011.04.120

    Article  Google Scholar 

  101. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles. Mater. Sci. Eng., A 528, 6545–6551 (2011). doi:10.1016/j.msea.2011.05.003

    Article  Google Scholar 

  102. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: TiC nanoparticle addition to enhance the mechanical response of hybrid magnesium alloy. J. Nanotechnol 2012, 1–9 (2012). doi:10.1155/2012/401574

    Google Scholar 

  103. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: The overall effects of AlN nanoparticle addition to hybrid magnesium alloy AZ91/ZK60A. J. Nanotechnol. 2012, 1–8 (2012). doi:10.1155/2012/687306

    Google Scholar 

  104. Jayaramanavar, P., Paramsothy, M., Balaji, A., Gupta, M.: Tailoring the tensile/compressive response of magnesium alloy ZK60A using Al2O3 nanoparticles. J. Mater. Sci. 45, 1170–1178 (2009). doi:10.1007/s10853-009-4059-6

    Article  Google Scholar 

  105. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement. J. Nanomater. 2011, 1–9 (2011). doi:10.1155/2011/642980

    Article  Google Scholar 

  106. Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles. Compos. Part A 42, 2093–2100 (2011). doi:10.1016/j.compositesa.2011.09.019

    Article  Google Scholar 

  107. Hassan, S.F., Gupta, M.: Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246–251 (2002)

    Article  Google Scholar 

  108. Umeda, J., Kawakami, M., Kondoh, K., et al.: Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649–657 (2010). doi:10.1016/j.matchemphys.2010.05.033

    Article  Google Scholar 

  109. Sankaranarayanan, S., Jayalakshmi, S., Gupta, M.: Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti+n–Al2O3) composites. J. Alloys Compd. 509, 7229–7237 (2011). doi:10.1016/j.jallcom.2011.04.083

    Article  Google Scholar 

  110. Sankaranarayanan, S., Sabat, R.K., Jayalakshmi, S., et al.: Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6Ti composite. J. Alloys Compd. 575, 207–217 (2013). doi:10.1016/j.jallcom.2013.04.095

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Ceschini, L. et al. (2017). Casting Routes for the Production of Al and Mg Based Nanocomposites. In: Aluminum and Magnesium Metal Matrix Nanocomposites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-2681-2_3

Download citation

Publish with us

Policies and ethics