Advertisement

Ex Situ Production Routes for Metal Matrix Nanocomposites

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Among different production routes hitherto developed for the manufacturing of metal matrix nanocomposites, a distinction can be done depending upon the matrix state during the production process, which can be molten, solid or semi-solid. In this Chapter, an overview of ex situ production routes is given, highlighting their general potential and shortcomings. Relevant case studies on the most promising and widespread casting production routes will be discussed more in detail in Chap.  3.

Keywords

Molten Metal Equal Channel Angular Pressing Friction Stir Welding FSPFriction Stir Processing Accumulative Roll Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hamedan, A.D., Shahmiri, M.: Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Mater Sci Eng A 556, 921–926 (2012). doi: 10.1016/j.msea.2012.07.093 CrossRefGoogle Scholar
  2. 2.
    Sajjadi, S.A., Ezatpour, H.R., Beygi, H.: Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng A 528, 8765–8771 (2011). doi: 10.1016/j.msea.2011.08.052 CrossRefGoogle Scholar
  3. 3.
    Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater Sci Eng A 518, 61–64 (2009). doi: 10.1016/j.msea.2009.04.014 CrossRefGoogle Scholar
  4. 4.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J Mater Process Technol 93, 1–7 (1999)CrossRefGoogle Scholar
  5. 5.
    Clyne, T.W., Withers, PJ.: An introduction to metal matrix composites. Cambridge University Press (1995)Google Scholar
  6. 6.
    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003)CrossRefGoogle Scholar
  7. 7.
    Suresh, S.M., Mishra, D., Srinivasan, A. et al.: Production and characterization of micro and nano Al2O3 particle-reinforced LM25 aluminium alloy composites. 6, 94–98 (2011)Google Scholar
  8. 8.
    Hemanth, J.: Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A 507, 110–113 (2009). doi: 10.1016/j.msea.2008.11.039 CrossRefGoogle Scholar
  9. 9.
    Li, Q., Rottmair, C.A., Singer, R.F.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70, 2242–2247 (2010). doi: 10.1016/j.compscitech.2010.05.024 CrossRefGoogle Scholar
  10. 10.
    Yar, A., Montazerian, M., Abdizadeh, H., Baharvandi, H.R.: Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloys Compd 484, 400–404 (2009). doi: 10.1016/j.jallcom.2009.04.117 CrossRefGoogle Scholar
  11. 11.
    Cao, G., Choi, H., Oportus, J., et al.: Study on tensile properties and microstructure of cast AZ91D/AlN nanocomposites. Mater Sci Eng A 494, 127–131 (2008). doi: 10.1016/j.msea.2008.04.070 CrossRefGoogle Scholar
  12. 12.
    Donthamsetty, S., Damera, N.R., Jain, P.K.: Ultrasonic cavitation assisted fabrication and characterization of A356 metal matrix nanocomposite reiforced with Sic, B4C, CNTs. AIJSTPME 2, 27–34 (2009)Google Scholar
  13. 13.
    Karbalaei Akbari, M., Mirzaee, O., Baharvandi, H.R.: Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Des 46, 199–205 (2013). doi: 10.1016/j.matdes.2012.10.008 CrossRefGoogle Scholar
  14. 14.
    Zhou, W., Xu, Z.M.: Casting of SiC reinforced metal matrix composites. J Mater Process Technol 63, 358–363 (1997)CrossRefGoogle Scholar
  15. 15.
    Mazahery, A., Shabani, M.O.: Characterization of cast A356 alloy reinforced with nano SiC composites. Trans Nonferrous Met Soc China 22, 275–280 (2012). doi: 10.1016/S1003-6326(11)61171-0 CrossRefGoogle Scholar
  16. 16.
    Su, H., Gao, W., Zhang, H., et al.: Study on preparation of large sized nanoparticle reinforced aluminium matrix composite by solid-liquid mixed casting process. Mater Sci Technol 28, 178–183 (2012). doi: 10.1179/1743284711Y.0000000009 CrossRefGoogle Scholar
  17. 17.
    Mazahery, A., Shabani, M.O.: Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol 217, 558–565 (2012). doi: 10.1016/j.powtec.2011.11.020 CrossRefGoogle Scholar
  18. 18.
    Su, H., Gao, W., Feng, Z., Lu, Z.: Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36, 590–596 (2012). doi: 10.1016/j.matdes.2011.11.064 CrossRefGoogle Scholar
  19. 19.
    So, K.P., Jeong, J.C., Park, J.G., et al.: SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74, 6–13 (2013). doi: 10.1016/j.compscitech.2012.09.014 CrossRefGoogle Scholar
  20. 20.
    Cao, G., Kobliska, J., Konishi, H., Li, X.: Tensile properties and microstructure of SiC nanoparticle-reinforced Mg-4Zn alloy fabricated by ultrasonic cavitation-based solidification processing. Metall Mater Trans A 39, 880–886 (2008). doi: 10.1007/s11661-007-9453-6 CrossRefGoogle Scholar
  21. 21.
    Lan, J., Yang, Y., Li, X.: Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A 386, 284–290 (2004). doi: 10.1016/j.msea.2004.07.024 CrossRefGoogle Scholar
  22. 22.
    Mula, S., Padhi, P., Panigrahi, S.C., et al.: On structure and mechanical properties of ultrasonically cast Al–2 % Al2O3 nanocomposite. Mater Res Bull 44, 1154–1160 (2009). doi: 10.1016/j.materresbull.2008.09.040 CrossRefGoogle Scholar
  23. 23.
    Yang, Y., Lan, J., Li, X.: Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380, 378–383 (2004). doi: 10.1016/j.msea.2004.03.073 CrossRefGoogle Scholar
  24. 24.
    Choi, H., Konishi, H., Li, X.: Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A 541, 159–165 (2012)CrossRefGoogle Scholar
  25. 25.
    Puga, H., Barbosa, J., Costa, S., et al.: Influence of indirect ultrasonic vibration on the microstructure and mechanical behavior of Al–Si–Cu alloy. Mater Sci Eng A 560, 589–595 (2013). doi: 10.1016/j.msea.2012.09.106 CrossRefGoogle Scholar
  26. 26.
    Cao, G., Konishi, H., Li, X.: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater Sci Eng A 486, 357–362 (2008). doi: 10.1016/j.msea.2007.09.054 CrossRefGoogle Scholar
  27. 27.
    Qian, M., Ramirez, A.: Ultrasonic grain refinement of magnesium and its alloys. In: Czerwinski, F. (ed.) Magnes, pp. 163–186. Alloy Des Process Prop, InTech (2011)Google Scholar
  28. 28.
    Li, X., Yang, Y., Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J Mater Sci 39, 3211–3212 (2004). doi: 10.1023/B:JMSC.0000025862.23609.6f CrossRefGoogle Scholar
  29. 29.
    Choi, H., Jones, M., Konishi, H., Li, X.: Effect of combined addition of Cu and aluminum oxide nanoparticles on mechanical properties and microstructure of Al-7Si-0.3 Mg alloy. Metall Mater Trans A 43, 738–746 (2011). doi: 10.1007/s11661-011-0905-7 CrossRefGoogle Scholar
  30. 30.
    Yang, Y., Li, X.: Ultrasonic cavitation-based nanomanufacturing of bulk aluminum matrix nanocomposites. J Manuf Sci Eng 129, 252 (2007). doi: 10.1115/1.2194064 CrossRefGoogle Scholar
  31. 31.
    Kandemir, S., Yalamanchili, A., Atkinson, H.V.: Production of aluminium matrix nanocomposite feedstock for thixoforming by an ultrasonic method. Key. Eng. Mater. 504–506, 339–344 (2012). doi:10.4028/www.scientific.net/KEM.504-506.339Google Scholar
  32. 32.
    Suslick, K.S., Didenko, Y., Fang, M.M., et al.: Acoustic cavitation and its chemical consequences. Phil Trans. R. Soc. Lond. A. 335–353 (1999)Google Scholar
  33. 33.
    Liu, Z., Han, Q., Li, J.: Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Compos Part B Eng 42, 2080–2084 (2011). doi: 10.1016/j.compositesb.2011.04.004 CrossRefGoogle Scholar
  34. 34.
    Choi, H., Cho, W., Li, X.C., et al.: Scale-up ultrasonic processing system for batch production of metallic nanocomposites. In: AFS Proceedings, pp. 1–7 (2013)Google Scholar
  35. 35.
    Lai, S.W., Chung, D.D.L.: Fabrication of particulate aluminium-matrix composites by liquid metal infiltration. J Mater Sci 29, 3128–3150 (1994). doi: 10.1007/BF00356655 CrossRefGoogle Scholar
  36. 36.
    Lai, S.W., Chung, D.D.L.: Phase distribution and associated mechanical property distribution in silicon carbide particle-reinforced aluminium fabricated by liquid metal infiltration. J Mater Sci 29, 2998–3016 (1994)CrossRefGoogle Scholar
  37. 37.
    Balch, D.K., Mortensen, A., Suresh, S., et al.: Thermal expansion of metals reinforced with ceramic particles and microcellular foams. Metall Mater Trans A 27, 3700–3717 (1996). doi: 10.1007/BF02595462 CrossRefGoogle Scholar
  38. 38.
    Muscat, D., Drew, R.A.L.: A method of measuring metal infiltration rates in porous preforms at high temperature. J Mater Sci Lett 12, 1567–1569 (1993)CrossRefGoogle Scholar
  39. 39.
    Fukunaga, H., Goda, K. Fabrication of fiber reinforced metal by squeeze casting : pressurized infiltration process of molten aluminum to continuous glass fiber bundle. Bull. JSME. (1984)Google Scholar
  40. 40.
    Rohatgi, P., Guo, R., Iksan, H., et al.: Pressure infiltration technique for synthesis of aluminum–fly ash particulate composite. Mater Sci Eng A 244, 22–30 (1998). doi: 10.1016/S0921-5093(97)00822-8 CrossRefGoogle Scholar
  41. 41.
    Lai, S.W., Chung, D.D.L.: Fabrication of particulate aluminium-matrix composites by liquid metal infiltration. J Mater Sci 29, 3128–3150 (1994). doi: 10.1007/BF00356655 CrossRefGoogle Scholar
  42. 42.
    Babu, J.S.S., Nair, K.P., Unnikrishnan, G., et al.: Fabrication and properties of magnesium (AM50)-based hybrid composites with graphite nanofiber and alumina short fiber. J Compos Mater 44, 971–987 (2009). doi: 10.1177/0021998309349548 CrossRefGoogle Scholar
  43. 43.
    Zhou, S., Zhang, X., Ding, Z., et al.: Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos Part A Appl Sci Manuf 38, 301–306 (2007). doi: 10.1016/j.compositesa.2006.04.004 CrossRefGoogle Scholar
  44. 44.
    Xiong, B., Xu, Z., Yan, Q., et al.: Fabrication of SiC nanoparticulates reinforced Al matrix composites by combining pressureless infiltration with ball-milling and cold-pressing technology. J Alloys Compd 497, L1–L4 (2010). doi: 10.1016/j.jallcom.2010.02.184 CrossRefGoogle Scholar
  45. 45.
    Xiong, B., Xu, Z., Yan, Q., et al.: Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. J Alloys Compd 509, 1187–1191 (2011). doi: 10.1016/j.jallcom.2010.09.171 CrossRefGoogle Scholar
  46. 46.
    Tham, L., Gupta, M., Cheng, L.: Influence of processing parameters on the near-net shape synthesis of aluminium-based metal matrix composites. J Mater Process Technol 89–90, 128–134 (1999). doi: 10.1016/S0924-0136(99)00002-3 CrossRefGoogle Scholar
  47. 47.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423, 153–156 (2006). doi: 10.1016/j.msea.2005.10.071 CrossRefGoogle Scholar
  48. 48.
    Srivatsan, T.S., Godbole, C., Paramsothy, M., Gupta, M.: Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of a magnesium alloy. J Mater Sci 47, 3621–3638 (2011). doi: 10.1007/s10853-011-6209-x CrossRefGoogle Scholar
  49. 49.
    Ho, K., Gupta, M., Srivatsan, T.: The mechanical behavior of magnesium alloy AZ91 reinforced with fine copper particulates. Mater Sci Eng A 369, 302–308 (2004). doi: 10.1016/j.msea.2003.11.011 CrossRefGoogle Scholar
  50. 50.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos Sci Technol 68, 1432–1439 (2008). doi: 10.1016/j.compscitech.2007.10.057 CrossRefGoogle Scholar
  51. 51.
    Goh, C., Wei, J., Lee, L., Gupta, M.: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55, 5115–5121 (2007). doi: 10.1016/j.actamat.2007.05.032 CrossRefGoogle Scholar
  52. 52.
    Gupta, M., Sharon, N.M.L.: Magnesium, Magnesium Alloys, and Magnesium Composites. Wiley (2011)Google Scholar
  53. 53.
    Wang, L., Turnley, P., Savage, G.: Gas content in high pressure die castings. J Mater Process Technol 211, 1510–1515 (2011). doi: 10.1016/j.jmatprotec.2011.03.024 CrossRefGoogle Scholar
  54. 54.
    Long, A., Thornhill, D., Armstrong, C., Watson, D.: Predicting die life from die temperature for high pressure dies casting aluminium alloy. Appl Therm Eng 44, 100–107 (2012). doi: 10.1016/j.applthermaleng.2012.03.045 CrossRefGoogle Scholar
  55. 55.
    Suryanarayana, C., Al-Aqeeli, N.: Mechanically alloyed nanocomposites. Prog Mater Sci 58, 383–502 (2013). doi: 10.1016/j.pmatsci.2012.10.001 CrossRefGoogle Scholar
  56. 56.
    Cintas, J., Cuevas, F.G., Montes, J.M., Herrera, E.J.: High-strength PM aluminium by milling in ammonia gas and sintering. Scr Mater 53, 1165–1170 (2005). doi: 10.1016/j.scriptamat.2005.07.019 CrossRefGoogle Scholar
  57. 57.
    Ye, J., He, J., Schoenung, J.M.: Cryomilling for the fabrication of a particulate B 4 C reinforced Al nanocomposite : Part I. Effects of process conditions on structure. Metall. Mater. Trans. A (2005)Google Scholar
  58. 58.
    Liu, Y.B., Lim, S.C., Lu, L., Lai, M.O.: Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. J Mater Sci 29, 1999–2007 (1994). doi: 10.1007/BF01154673 CrossRefGoogle Scholar
  59. 59.
    Bera, S., Chowdhury, S.G., Estrin, Y., Manna, I.: Mechanical properties of Al7075 alloy with nano-ceramic oxide dispersion synthesized by mechanical milling and consolidated by equal channel angular pressing. J Alloys Compd 548, 257–265 (2013). doi: 10.1016/j.jallcom.2012.09.007 CrossRefGoogle Scholar
  60. 60.
    Suryanarayana, C.: Synthesis of nanocomposites by mechanical alloying. J Alloys Compd 509, S229–S234 (2011). doi: 10.1016/j.jallcom.2010.09.063 CrossRefGoogle Scholar
  61. 61.
    Suryanarayana, C.: Mechanical alloying and milling. Prog Mater Sci 46, 1–184 (2001). doi: 10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  62. 62.
    Witkin, D.B., Lavernia, E.J.: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51, 1–60 (2006). doi: 10.1016/j.pmatsci.2005.04.004 CrossRefGoogle Scholar
  63. 63.
    Fecht, H.J.: Nanostructure formation by mechanical attrition. Nanostruct Mater 6, 33–42 (1995)CrossRefGoogle Scholar
  64. 64.
    Tellkamp, V.L., Melmed, A., Lavernia, E.J.: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy 32, 2335–2343 (2001)Google Scholar
  65. 65.
    Zhou, F., Lee, J., Dallek, S., Lavernia, E.J.: High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16, 3451–3458 (2011). doi: 10.1557/JMR.2001.0474 CrossRefGoogle Scholar
  66. 66.
    Lee, M., Endoh, S., Iwata, H.: A basic study on the solid-state nitriding of aluminum by mechanical alloying using a planetary ball mill. Adv Powder Technol 8, 291–299 (1997). doi: 10.1016/S0921-8831(08)60602-0 CrossRefGoogle Scholar
  67. 67.
    Il, Moon K., Lee, K.S.: Development of nanocrystalline Al–Ti alloy powders by reactive ball milling. J Alloys Compd 264, 258–266 (1998). doi: 10.1016/S0925-8388(97)00262-4 CrossRefGoogle Scholar
  68. 68.
    Asgharzadeh, H., Simchi, A., Kim, H.S.: In situ synthesis of nanocrystalline Al6063 matrix nanocomposite powder via reactive mechanical alloying. Mater Sci Eng A 527, 4897–4905 (2010). doi: 10.1016/j.msea.2010.04.031 CrossRefGoogle Scholar
  69. 69.
    Naranjo, M.: Sintering of Al/AlN composite powder obtained by gas–solid reaction milling. Scr Mater 49, 65–69 (2003). doi: 10.1016/S1359-6462(03)00179-9 CrossRefGoogle Scholar
  70. 70.
    Manoj, G., Wong Wai Leong, E.: Microwaves and Metals. Wiley, Hoboken (2007)Google Scholar
  71. 71.
    Tun, K.S., Gupta, M.: Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol 67, 2657–2664 (2007). doi: 10.1016/j.compscitech.2007.03.006 CrossRefGoogle Scholar
  72. 72.
    Gupta, M., Wong, W.L.E.: Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater 52, 479–483 (2005). doi: 10.1016/j.scriptamat.2004.11.006 CrossRefGoogle Scholar
  73. 73.
    Fan, Z.: Semisolid metal processing. Int Mater Rev 47, 49–86 (2002). doi: 10.1179/095066001225001076 CrossRefGoogle Scholar
  74. 74.
    Mehrabian, R., Flemings, M.: Die castings of partially solidified alloys. Trans AFS 80, 173–182 (1972)Google Scholar
  75. 75.
    Flemings, M.C., Riek, R.G., Young, K.P.: Rheocasting. Mater Sci Eng 25, 103–117 (1976)CrossRefGoogle Scholar
  76. 76.
    Kenney, M., Courtois, J., Evans, R., et al.: Semisolid metal casting and forging. Met. Handb. 327–338. (9th ed. ASM International, Metals Park OH) (1988)Google Scholar
  77. 77.
    Dobatkin, V., Eskin, G.: Ingots of aluminum alloys with nondendritic structure produced by ultrasonic treatment for deformation in the semi-solid state. In: international conference on semi-solid processing alloys composition, Sheffield, pp 193–196 (1996)Google Scholar
  78. 78.
    Liu, C., Pan, Y., Aoyama, S.: In: Bashin, A., More, J., Young, K., Midson, S. (eds.) Proceedings of 5th international conference on semi-solid processing alloys composition, pp 439–447 (1998)Google Scholar
  79. 79.
    Tzimas, E., Zavaliangos, A.: A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced, melt activated process. Mater Sci Eng A 289, 217–227 (2000). doi: 10.1016/S0921-5093(00)00907-2 CrossRefGoogle Scholar
  80. 80.
    Tauzig, G., Xia, K.: In: Bashin, A., More, J., Young, K., Midson, S. (eds.) 5th international conference on semi-solid processing alloys composition, Golden, pp. 473–480 (1998)Google Scholar
  81. 81.
    Wang, H., StJohn, D., Davidson, C.: Proceedings of Turin Italy Spt, Brescia, Edimet. In: Chiarmetta, G., Rosso, M. (eds.) Proceedings of 6th international conference on semi-solid processing alloys composition, Turin, pp. 149–154 (2000)Google Scholar
  82. 82.
    Kiuchi, M., Kopp, R.: Mushy/semi-solid metal forming technology—present and future. CIRP Ann Manuf Technol 51, 653–670 (2002)CrossRefGoogle Scholar
  83. 83.
    Oh, S.I., Lim, J.Y., Kim, Y.C., et al.: Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. J Alloys Compd 542, 111–117 (2012). doi: 10.1016/j.jallcom.2012.07.029 CrossRefGoogle Scholar
  84. 84.
    So, K.P., Jeong, J.C., Park, J.G., et al.: SiC formation on carbon nanotube surface for improving wettability with aluminum. Compos Sci Technol 74, 6–13 (2013). doi: 10.1016/j.compscitech.2012.09.014 CrossRefGoogle Scholar
  85. 85.
    Mitsuru, Yasunori, Tatsuo, et al. Method and apparatus for shaping semisolid metals. Patent EP 0745694 A1 (1996)Google Scholar
  86. 86.
    Kaufmann, H., Uggowitzer, P.J.: Fundamentals of the new rheocasting process for magnesium alloys. Adv Eng Mater 3, 963 (2001). doi: 10.1002/1527-2648(200112)3:12<963:AID-ADEM963>3.0.CO;2-X CrossRefGoogle Scholar
  87. 87.
    Hong, C.P., Kim, J.M.: Development of an advanced rheocasting process and its application. In: 9th international conference on semi-solid processing alloys composition, Busan, pp. 44–53 (2006)Google Scholar
  88. 88.
    Zaffaina, L., Alain, R., Bonollo, F., Fan, Z.: New challenges and directions for high pressure die-cast magnesium. Mater Sci Eng A 472, 251–257 (2008)CrossRefGoogle Scholar
  89. 89.
    Fan, Z.: Development of the rheo-diecasting process for magnesium alloys. Mater Sci Eng A 413–414, 72–78 (2005). doi: 10.1016/j.msea.2005.09.038 CrossRefGoogle Scholar
  90. 90.
    Jorstad, J., Apelian, D.: Pressure assisted processes for high integrity aluminium castings—part 2. Foundry Trade. J. 282–287 (2009)Google Scholar
  91. 91.
    Espinosa, I., Menargues, S., Baile, M.T., et al.: SLC components as an alternative to extruded alloys for marine applications. Int J Mater Form Suppl 1, 993–996 (2008). doi: 10.1007/s12289-008-0225-7 CrossRefGoogle Scholar
  92. 92.
    Yurko, J.A., Martinez, R.A., Flemings, M.C.: Development of the semi-solid rheocasting (SSR) process 2002. In: 7th international conference on semi-solid processing alloys composition, Tsukuba, pp. 659–664 (2002)Google Scholar
  93. 93.
    Granath, O., Wessén, M., Cao, H.: Determining effect of slurry process parameters on semisolid A356 alloy microstructures produced by RheoMetal process. Int J Cast Met Res 21, 349–356 (2008). doi: 10.1179/136404608X320706 CrossRefGoogle Scholar
  94. 94.
    Cao, H., Wessén, M., Granath, O.: Effect of injection velocity on porosity formation in rheocast Al component using RheoMetal process. Int J Cast Met Res 23, 158–163 (2010). doi: 10.1179/136404609X12565676328682 CrossRefGoogle Scholar
  95. 95.
    Rosso, M.: Thixocasting and rheocasting technologies, improvements going on. J Achiev Mater Manuf Eng 54, 110–119 (2012)Google Scholar
  96. 96.
    Sajjadi, S.A., Torabi Parizi, M., Ezatpour, H.R., Sedghi, A.: Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J Alloys Compd 511, 226–231 (2012). doi: 10.1016/j.jallcom.2011.08.105 CrossRefGoogle Scholar
  97. 97.
    Kamali Ardakani, M.R., Khorsand, S., Amirkhanlou, S., Javad Nayyeri, M.: Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite. Mater Sci Eng A 592, 121–127 (2014). doi: 10.1016/j.msea.2013.11.006 CrossRefGoogle Scholar
  98. 98.
    Abbasipour, B., Niroumand, B., Monir Vaghefi, S.M.: Compocasting of A356-CNT composite. Trans Nonferrous Met Soc China 20, 1561–1566 (2010). doi: 10.1016/S1003-6326(09)60339-3 CrossRefGoogle Scholar
  99. 99.
    Naher, S., Brabazon, D., Looney, L.: Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J Mater Process Technol 166, 430–439 (2005). doi: 10.1016/j.jmatprotec.2004.09.043 CrossRefGoogle Scholar
  100. 100.
    Kawabe, A., Oshida, A., Toda, T., Hiroyuki, Kobayashi: Fabrication process of metal matrix composite with nano-size SiC particle produced by vortex method. J Japan Inst Light Met 49, 149–154 (1999)CrossRefGoogle Scholar
  101. 101.
    Abbasipour, B., Niroumand, B., Monir Vaghefi, S.M.: Compocasting of A356-CNT composite. Trans Nonferrous Met Soc China 20, 1561–1566 (2010). doi: 10.1016/S1003-6326(09)60339-3 CrossRefGoogle Scholar
  102. 102.
    El-Mahallawi, I., Abdelkader, H., Yousef, L., et al.: Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic alloys. Mat Sci Eng A 556, 76–87 (2012)CrossRefGoogle Scholar
  103. 103.
    Chen, L.Y., Peng, J.Y., Xu, J.Q., et al.: Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater 69, 634–637 (2013). doi: 10.1016/j.scriptamat.2013.07.016 CrossRefGoogle Scholar
  104. 104.
    Shen, M.J., Wang, X.J., Li, C.D., et al.: Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater Des 52, 1011–1017 (2013). doi: 10.1016/j.matdes.2013.05.067 CrossRefGoogle Scholar
  105. 105.
    Deng, K., Wang, C., Wang, X., et al.: Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Mater Des 38, 110–114 (2012). doi: 10.1016/j.matdes.2012.02.017 CrossRefGoogle Scholar
  106. 106.
    Deng, K.K., Wu, K., Wu, Y.W., et al.: Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites. J Alloys Compd 504, 542–547 (2010). doi: 10.1016/j.jallcom.2010.05.159 CrossRefGoogle Scholar
  107. 107.
    Deng, K.K., Wang, X.J., Wu, Y.W., et al.: Effect of particle size on microstructure and mechanical properties of SiCp/AZ91 magnesium matrix composite. Mater Sci Eng A 543, 158–163 (2012). doi: 10.1016/j.msea.2012.02.064 CrossRefGoogle Scholar
  108. 108.
    Nie, K.B., Wang, X.J., Wu, K., et al.: Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration. J Alloys Compd 509, 8664–8669 (2011). doi: 10.1016/j.jallcom.2011.06.091 CrossRefGoogle Scholar
  109. 109.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J Alloys Compd 512, 355–360 (2012). doi: 10.1016/j.jallcom.2011.09.099 CrossRefGoogle Scholar
  110. 110.
    Nie, K.B., Wang, X.J., Xu, L., et al.: Influence of extrusion temperature and process parameter on microstructures and tensile properties of a particulate reinforced magnesium matrix nanocomposite. Mater Des 36, 199–205 (2012). doi: 10.1016/j.matdes.2011.11.020 CrossRefGoogle Scholar
  111. 111.
    Sajjadi, S.A., Ezatpour, H.R., Torabi Parizi, M.: Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Des 34, 106–111 (2012). doi: 10.1016/j.matdes.2011.07.037 CrossRefGoogle Scholar
  112. 112.
    Mazahery, A., Shabani, M.: Mechanical properties of A356 matrix composites reinforced with nano SiC particles. Strength Mater 44, 686–692 (2012)CrossRefGoogle Scholar
  113. 113.
    Tahamtan, S., Halvaee, A., Emamy, M., Zabihi, M.S.: Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology. Mater Des 49, 347–359 (2013). doi: 10.1016/j.matdes.2013.01.032 CrossRefGoogle Scholar
  114. 114.
    Sankaranarayanan, S., Jayalakshmi, S., Gupta, M.: Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti + n-Al2O3) composites. J Alloys Compd 509, 7229–7237 (2011). doi: 10.1016/j.jallcom.2011.04.083 CrossRefGoogle Scholar
  115. 115.
    Sankaranarayanan, S., Sabat, R.K., Jayalakshmi, S., et al.: Effect of hybridizing micron-sized Ti with nano-sized SiC on the microstructural evolution and mechanical response of Mg–5.6 Ti composite. J Alloys Compd 575, 207–217 (2013). doi: 10.1016/j.jallcom.2013.04.095 CrossRefGoogle Scholar
  116. 116.
    Sun, K., Shi, Q.Y., Sun, Y.J., Chen, G.Q.: Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mater Sci Eng A 547, 32–37 (2012). doi: 10.1016/j.msea.2012.03.071 CrossRefGoogle Scholar
  117. 117.
    Liu, Q., Ke, L., Liu, F., et al.: Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater Des 45, 343–348 (2013). doi: 10.1016/j.matdes.2012.08.036 CrossRefGoogle Scholar
  118. 118.
    Shafiei-Zarghani, A., Kashani-Bozorg, S.F., Zarei-Hanzaki, A.: Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A 500, 84–91 (2009). doi: 10.1016/j.msea.2008.09.064 CrossRefGoogle Scholar
  119. 119.
    Morisada, Y., Fujii, H., Nagaoka, T., et al.: Fullerene/A5083 composites fabricated by material flow during friction stir processing. Compos Part A Appl Sci Manuf 38, 2097–2101 (2007). doi: 10.1016/j.compositesa.2007.07.004 CrossRefGoogle Scholar
  120. 120.
    Lee, C., Huang, J., Hsieh, P.: Mg based nano-composites fabricated by friction stir processing. Scr Mater 54, 1415–1420 (2006). doi: 10.1016/j.scriptamat.2005.11.056 CrossRefGoogle Scholar
  121. 121.
    Faraji, G., Asadi, P.: Characterization of AZ91/alumina nanocomposite produced by FSP. Mater Sci Eng A 528, 2431–2440 (2011). doi: 10.1016/j.msea.2010.11.065 CrossRefGoogle Scholar
  122. 122.
    Alizadeh, M., Paydar, M.H.: Study on the effect of presence of TiH2 particles on the roll bonding behavior of aluminum alloy strips. Mater Des 30, 82–86 (2009). doi: 10.1016/j.matdes.2008.04.058 CrossRefGoogle Scholar
  123. 123.
    Alizadeh, M., Paydar, M.H., Sharifian Jazi, F.: Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process. Compos Part B Eng 44, 339–343 (2013). doi: 10.1016/j.compositesb.2012.04.069 CrossRefGoogle Scholar
  124. 124.
    Saito, Y., Utsunomiya, H., Tsuji, N., Sakai, T.: Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 47 (1999)Google Scholar
  125. 125.
    Jamaati, R., Toroghinejad, M.R., Dutkiewicz, J., Szpunar, J.A.: Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process. Mater Des 35, 37–42 (2012). doi: 10.1016/j.matdes.2011.09.040 CrossRefGoogle Scholar
  126. 126.
    Darmiani, E., Danaee, I., Golozar, M.A., Toroghinejad, M.R.: Corrosion investigation of Al–SiC nano-composite fabricated by accumulative roll bonding (ARB) process. J Alloys Compd 552, 31–39 (2013). doi: 10.1016/j.jallcom.2012.10.069 CrossRefGoogle Scholar
  127. 127.
    Ortiz-Cuellar, E., Hernandez-Rodriguez, M.A.L., García-Sanchez, E.: Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear 271, 1828–1832 (2011). doi: 10.1016/j.wear.2010.12.082 CrossRefGoogle Scholar
  128. 128.
    Jamaati, R., Toroghinejad, M.R.: Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding. Mater Sci Eng A 527, 4146–4151 (2010). doi: 10.1016/j.msea.2010.03.070 CrossRefGoogle Scholar
  129. 129.
    Mozaffari, A., Danesh Manesh, H., Janghorban, K.: Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J Alloys Compd 489, 103–109 (2010). doi: 10.1016/j.jallcom.2009.09.022 CrossRefGoogle Scholar
  130. 130.
    Rezayat, M., Akbarzadeh, A.: Bonding behavior of Al–Al2O3 laminations during roll bonding process. Mater Des 36, 874–879 (2012). doi: 10.1016/j.matdes.2011.08.048 CrossRefGoogle Scholar
  131. 131.
    Alizadeh, M., Beni, H.A., Ghaffari, M., Amini, R.: Properties of high specific strength Al–4wt% Al2O3/B4C nano-composite produced by accumulative roll bonding process. Mater Des 50, 427–432 (2013). doi: 10.1016/j.matdes.2013.03.018 CrossRefGoogle Scholar
  132. 132.
    Kadkhodaee, M., Babaiee, M., Danesh Manesh, H., et al.: Evaluation of corrosion properties of Al/nanosilica nanocomposite sheets produced by accumulative roll bonding (ARB) process. J Alloys Compd 576, 66–71 (2013). doi: 10.1016/j.jallcom.2013.04.090 CrossRefGoogle Scholar
  133. 133.
    Shayan, M., Niroumand, B.: Synthesis of A356–MWCNT nanocomposites through a novel two stage casting process. Mater Sci Eng A 582, 262–269 (2013). doi: 10.1016/j.msea.2013.05.090 CrossRefGoogle Scholar
  134. 134.
    Jayalakshmi, S.: PhD Thesis, processing and characterization of magnesium alloys (AM100 & ZC63) and their alumina short fiber reinforced composites using squeeze casting and squeeze infiltration techniques. Indian Institute of Science (IISc), Bangalore (2002)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations