Advertisement

Metal Matrix Nanocomposites: An Overview

  • Lorella Ceschini
  • Arne Dahle
  • Manoj Gupta
  • Anders Eric Wollmar Jarfors
  • S. Jayalakshmi
  • Alessandro Morri
  • Fabio Rotundo
  • Stefania Toschi
  • R. Arvind Singh
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this chapter, an overview on both Al and Mg based nanocomposites is given, emphasizing particularly on the importance of using reinforcements at nano length scale. The strengthening mechanisms at the basis of the reinforcing action exerted by nanoparticles (Orowan mechanism, enhanced dislocation density, grain refinement and load bearing effect) is described and their contribution discussed; modelling of the above mentioned mechanisms is also presented.

Keywords

Friction Welding Ceramic Reinforcement Production Route Abrasive Waterjet Discontinuously Reinforce Aluminium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kearney, A.L.: Properties of cast aluminum alloys. In: ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-purpose Materials, vol. 2, pp. 152–177. ASM International (1990)Google Scholar
  2. 2.
    Baradarani, B., Raiszadeh, R.: Precipitation hardening of cast Zr-containing A356 aluminium alloy. Mater. Des. 32, 935–940 (2011)CrossRefGoogle Scholar
  3. 3.
    Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge (1995) Google Scholar
  4. 4.
    Ye, H., Liu, X.Y.: Review of recent studies in magnesium. J. Mater. Sci. 9, 6153–6171 (2004)CrossRefGoogle Scholar
  5. 5.
    Fridlyander, J.N.: Metal Matrix Composites. Springer, Netherlands (1994)Google Scholar
  6. 6.
    Miracle, D.B., Donaldson, S.L.: Introduction to composites. In: ASM Handbook, vol. 21, pp. 3–17. ASM International (2001)Google Scholar
  7. 7.
    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28, 319–334 (2003)CrossRefGoogle Scholar
  8. 8.
    Maruyama, B.: Progress and promise in aluminium metal matrix composites. AMPTIAC NewsLett. 2 (1998)Google Scholar
  9. 9.
    Manna, A., Bhattacharayya, B.: A study on machinability of Al/SiC-MMC. J. Mater. Process. Technol. 140, 711–716 (2003). doi: 10.1016/S0924-0136(03)00905-1 CrossRefGoogle Scholar
  10. 10.
    Ellis, M.B.D.: Joining of aluminium based metal matrix composites. Int. Mater. Rev. 41, 41–58 (1996). doi: 10.1179/095066096790326066 CrossRefGoogle Scholar
  11. 11.
    Rotundo, F., Ceschini, L., Morri, A., et al.: Mechanical and microstructural characterization of 2124Al/25 vol.%SiCp joints obtained by linear friction welding (LFW). Compos. Part A 41, 1028–1037 (2010). doi: 10.1016/j.compositesa.2010.03.009 CrossRefGoogle Scholar
  12. 12.
    Ceschini, L., Morri, A., Rotundo, F.: Forming of metal matrix composites. Comp. mater. process. Adv. Form. Technol. 3 (2014)Google Scholar
  13. 13.
    Kang, Y.-C., Chan, S.L.-I.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85, 438–443 (2004). doi: 10.1016/j.matchemphys.2004.02.002 CrossRefGoogle Scholar
  14. 14.
    Deuis, R.L., Subramanian, C., Yellup, J.M.Y.: Dry sliding wear of aluminium composites-a review. Compos. Sci. Technol. 57 (1997)Google Scholar
  15. 15.
    Taya, M., Arsenault, R.J.: Metal Matrix Composites, Thermomechanical Behavior. Pergamon Press, New York (1989)Google Scholar
  16. 16.
    Ceschini, L., Morri, A., Rotundo, F., Toschi, S.: Gas-liquid in-situ production of ceramic reinforced aluminum matrix nanocomposites. In: Materials Science Forum, pp. 2011–2015. Trans Tech Publications (2014)Google Scholar
  17. 17.
    Tjong, S.C.: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639–652 (2007). doi: 10.1002/adem.200700106 CrossRefGoogle Scholar
  18. 18.
    Mazahery, A., Abdizadeh, H., Baharvandi, H.R.: Development of high-performance A356/nano-Al2O3 composites. Mater. Sci. Eng. A 518, 61–64 (2009). doi: 10.1016/j.msea.2009.04.014 CrossRefGoogle Scholar
  19. 19.
    Yar, A., Montazerian, M., Abdizadeh, H., Baharvandi, H.R.: Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J. Alloys Compd. 484, 400–404 (2009). doi: 10.1016/j.jallcom.2009.04.117 CrossRefGoogle Scholar
  20. 20.
    Zhou, W., Xu, Z.M.: Casting of SiC reinforced metal matrix composites. J. Mater. Process. Technol. 63, 358–363 (1997)CrossRefGoogle Scholar
  21. 21.
    Sajjadi, S.A., Ezatpour, H.R., Beygi, H.: Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater. Sci. Eng. A 528, 8765–8771 (2011). doi: 10.1016/j.msea.2011.08.052 CrossRefGoogle Scholar
  22. 22.
    Hashim, J., Looney, L., Hashmi, M.S.J.: Metal matrix composites: production by the stir casting method. J. Mater. Process. Technol. 93, 1–7 (1999)CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Chen, D.: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr. Mater. 54, 1321–1326 (2006). doi: 10.1016/j.scriptamat.2005.12.017 CrossRefGoogle Scholar
  24. 24.
    Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1–23 (1994). doi: 10.1179/095066094790150982 CrossRefGoogle Scholar
  25. 25.
    Thilly, L., Véron, M., Ludwig, O., Lecouturier, F.: Deformation mechanism in high strength Cu/Nb nanocomposites. Mater. Sci. Eng. A 309–310, 510–513 (2001). doi: 10.1016/S0921-5093(00)01661-0 CrossRefGoogle Scholar
  26. 26.
    Hazzledine, P.M.: Direct versus indirect dispersion hardening. Scr. Metall. Mater. 26, 57–58 (1992)CrossRefGoogle Scholar
  27. 27.
    Vaidya, R.U., Chawla, K.: Thermal expansion of metal-matrix composites. Compos. Sci. Technol. 50, 13–22 (1994)CrossRefGoogle Scholar
  28. 28.
    Choi, S.M., Awaji, H.: Nanocomposites—a new material design concept. Sci. Technol. Adv. Mater. 6, 2–10 (2005). doi: 10.1016/j.stam.2004.07.001 CrossRefGoogle Scholar
  29. 29.
    Dunand, D., Mortensen, A.: No Reinforced silver chloride as a model material for the study of dislocations in metal matrix composites. Mater. Sci. Eng. A 144, 179–188 (1991)CrossRefGoogle Scholar
  30. 30.
    Arsenault, R.J., Shi, N.: Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 81, 175–187 (1986)CrossRefGoogle Scholar
  31. 31.
    Sanaty-Zadeh, A.: Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater. Sci. Eng. A 531, 112–118 (2012). doi: 10.1016/j.msea.2011.10.043 CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Maljkovic, N., Mitchell, B.S.: Structure and interfacial properties of nanocrystalline aluminum/mullite composites. Mater. Sci. Eng. A 326, 317–323 (2002). doi: 10.1016/S0921-5093(01)01500-3 CrossRefGoogle Scholar
  33. 33.
    Habibnejad-Korayem, M., Mahmudi, R., Poole, W.J.: Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A 519, 198–203 (2009). doi: 10.1016/j.msea.2009.05.001 CrossRefGoogle Scholar
  34. 34.
    Davies, R.K., Randle, V., Marshall, G.J.: Continuous recrystallization—related phenomena in a commercial Al-Fe-Si alloy 46, 6021–6032 (1998)Google Scholar
  35. 35.
    Ceschini, L., Morri, A., Morri, A., et al.: Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Mater. Des. 30, 4525–4531 (2009). doi: 10.1016/j.matdes.2009.05.012 CrossRefGoogle Scholar
  36. 36.
    Kim, C.-S., Sohn, I., Nezafati, M., et al.: Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48, 4191–4204 (2013). doi: 10.1007/s10853-013-7232-x CrossRefGoogle Scholar
  37. 37.
    Kocks, U.F., Argon, A.S.A.M.: Thermodynamics and Kinetics of Slip. Prog. Mater. Sci. 19, 224 (1975)Google Scholar
  38. 38.
    Nardone, V.C., Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Metall. 20, 43–48 (1986)CrossRefGoogle Scholar
  39. 39.
    Arsenault, R.J.: No TitleThe strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide. Mater. Sci. Eng. 64, 171–181 (1984)CrossRefGoogle Scholar
  40. 40.
    Goh, C., Wei, J., Lee, L., Gupta, M.: Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta. Mater. 55, 5115–5121 (2007). doi: 10.1016/j.actamat.2007.05.032 CrossRefGoogle Scholar
  41. 41.
    Ramakrishnan, N.: An analytical study on strengthening of particulate reinforced metal matrix composites. Acta. Mater. 44, 69–77 (1996)CrossRefGoogle Scholar
  42. 42.
    Zhong, X.L., Wong, W.L.E., Gupta, M.: Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta. Mater. 55, 6338–6344 (2007). doi: 10.1016/j.actamat.2007.07.039 CrossRefGoogle Scholar
  43. 43.
    Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64(9), 747 (1951). doi: 10.1088/0370-1301/64/9/303
  44. 44.
    Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)Google Scholar
  45. 45.
    Dai, L.H., Ling, Z., Bai, Y.L.: Size-dependent inelastic behavior of particle-reinforced metal–matrix composites. Compos. Sci. Technol. 61, 1057–1063 (2001). doi: 10.1016/S0266-3538(00)00235-9 CrossRefGoogle Scholar
  46. 46.
    Zhang, Z., Chen, D.L.: Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483–484, 148–152 (2008). doi: 10.1016/j.msea.2006.10.184 CrossRefGoogle Scholar
  47. 47.
    Vogt, R., Zhang, Z., Li, Y., et al.: The absence of thermal expansion mismatch strengthening in nanostructured metal–matrix composites. Scr. Mater. 61, 1052–1055 (2009). doi: 10.1016/j.scriptamat.2009.08.025 CrossRefGoogle Scholar
  48. 48.
    Redsten, A.M., Klier, E.M., Brown, A.M., Dunand, D.C.: Mechanical properties and microstructure of cast oxide-dispersion-strengthened aluminum. Mater. Sci. Eng. A 201, 88–102 (1995)CrossRefGoogle Scholar
  49. 49.
    Lindroos, V.K., Talvitie, M.J.: Recent advances in metal matrix composites. J. Mater. Process. Technol. 53, 273–284 (1995)CrossRefGoogle Scholar
  50. 50.
    Harrigan, W.C.: Commercial processing of metal matrix composites. Mater. Sci. Eng. A 244, 75–79 (1998)CrossRefGoogle Scholar
  51. 51.
    Kaczmar, J.W., Pietrzak, K., Włosiński, W.: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58–67 (2000). doi: 10.1016/S0924-0136(00)00639-7 CrossRefGoogle Scholar
  52. 52.
    Miracle, D.: Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005). doi: 10.1016/j.compscitech.2005.05.027 CrossRefGoogle Scholar
  53. 53.
    Ceschini, L., Minak, G., Morri, A.: Tensile and fatigue properties of the AA6061/20 vol.% Al2O3p and AA7005/10 vol.% Al2O3p composites. Compos. Sci. Technol. 66, 333–342 (2006). doi: 10.1016/j.compscitech.2005.04.044 CrossRefGoogle Scholar
  54. 54.
    Ceschini, L., Minak, G., Morri, A.: Forging of the AA2618/20 vol.% Al2O3p composite: effects on microstructure and tensile properties. Compos. Sci. Technol. 69, 1783–1789 (2009). doi: 10.1016/j.compscitech.2008.08.027 CrossRefGoogle Scholar
  55. 55.
    Ceschini, L., Minak, G., Morri, A., Tarterini, F.: Forging of the AA6061/23 vol.%Al2O3p composite: effects on microstructure and tensile properties. Mater. Sci. Eng. A 513–514, 176–184 (2009). doi: 10.1016/j.msea.2009.01.057 CrossRefGoogle Scholar
  56. 56.
    Ceschini, L., Martini, C., Sambogna, G., Tarterini, F.: Dry sliding behaviour of PEO (Plasma Electrolytic Oxidation) treated AA2618/20 % Al2O3p composite. Mater. Sci. Forum 678, 61–74 (2011)CrossRefGoogle Scholar
  57. 57.
    Ceschini, L., Morri, A.: High strain rate superplasticity of a hot-extruded and hot-rolled AA6013/20 vol.%SiCp composite. MatSci. Tech. 19, 943–948 (2003)CrossRefGoogle Scholar
  58. 58.
    Hunt, W.H., Miracle, D.B.: Automotive Applications of Metal-matrix Composites. pp. 1043–1049 (2001)Google Scholar
  59. 59.
    Besterci, M., Slesar, M., Jangg, G.: Structure and properties of dispersion hardened Al-Al4c3 materials. Powder Met. Int. 24. INIST-CNRS, France (1992)Google Scholar
  60. 60.
    Cronjäger, L., Meister, D.: Machining of fibre and particle-reinforced aluminium. CIRP Ann. Manuf. Technol. 41, 63–66 (1992)CrossRefGoogle Scholar
  61. 61.
    Andrewes, C.J.E., Feng, H., Lau, W.M.: Machining of an aluminum/SiC composite using diamond inserts. J. Mater. Process. Technol. 102, 25–29 (2000). doi: 10.1016/S0924-0136(00)00425-8 CrossRefGoogle Scholar
  62. 62.
    Ozben, T., Kilickap, E., Cakir, O.: Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J. Mater. Process. Tech. 198, 220–225 (2008)CrossRefGoogle Scholar
  63. 63.
    El-Mahallawi, I., Abdelkader, H., Yousef, L., et al.: Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic alloys. Mat. Sci. Eng. A 556, 76–87 (2012)CrossRefGoogle Scholar
  64. 64.
    Rotundo, F., Ceschini, L., Morri, A., et al.: Mechanical and microstructural characterization of 2124Al/25 vol.%SiCp joints obtained by linear friction welding (LFW). Compos. Part A 41, 1028–1037 (2010). doi: 10.1016/j.compositesa.2010.03.009 CrossRefGoogle Scholar
  65. 65.
    Ceschini, L., Boromei, I., Minak, G., et al.: Microstructure, tensile and fatigue properties of AA6061/20 vol.%Al2O3p friction stir welded joints. Compos. Part A 38, 1200–1210 (2007). doi: 10.1016/j.compositesa.2006.06.009 CrossRefGoogle Scholar
  66. 66.
    Rotundo, F., Marconi, A., Morri, A., Ceschini, L.: Dissimilar linear friction welding between a SiC particle reinforced aluminum composite and a monolithic aluminum alloy: microstructural, tensile and fatigue properties. Mater. Sci. Eng. A 559, 852–860 (2013). doi: 10.1016/j.msea.2012.09.033 CrossRefGoogle Scholar
  67. 67.
    Lim, J.-Y., Oh, S.-I., Kim, Y.-C., et al.: Effects of CNF dispersion on mechanical properties of CNF reinforced A7xxx nanocomposites. Mater. Sci. Eng. A 556, 337–342 (2012). doi: 10.1016/j.msea.2012.06.096 CrossRefGoogle Scholar
  68. 68.
    Karbalaei Akbari, M., Mirzaee, O., Baharvandi, H.R.: Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater. Des. 46, 199–205 (2013). doi: 10.1016/j.matdes.2012.10.008 CrossRefGoogle Scholar
  69. 69.
    Cadek, J., Kucharova, K., Sustek, V.: A PM 2124Al-20SiC p composite: disappearance of true threshold creep behaviour at high testing temperatures. Scr. Mater. 40, 1269–1275 (1999)CrossRefGoogle Scholar
  70. 70.
    Choi, H.J., Bae, D.H.: Creep properties of aluminum-based composite containing multi-walled carbon nanotubes. Scr. Mater. 65, 194–197 (2011). doi: 10.1016/j.scriptamat.2011.03.038 CrossRefGoogle Scholar
  71. 71.
    Nemati N, Khosroshahi R, Emamy M, Zolriasatein A (2011) Investigation of microstructure, hardness and wear properties of Al–4.5 wt% Cu–TiC nanocomposites produced by mechanical milling. Mater. Des. 32:3718–3729. doi: 10.1016/j.matdes.2011.03.056
  72. 72.
    Ma, Z.Y., Li, Y.L., Liang, Y., et al.: Nanometric Si3N 4 particulate-reinforced aluminum composite. Mater. Sci. Eng. A 219, 229–231 (1996)CrossRefGoogle Scholar
  73. 73.
    Tharumarajah, A., Koltun, P.: Is there an environmental advantage of using magnesium components for light-weighting cars? J. Clean Prod. 15, 1007–1013 (2007). doi: 10.1016/j.jclepro.2006.05.022 CrossRefGoogle Scholar
  74. 74.
    Avadesian, M.M.: ASM Specialty Handbook-magnesium and Magnesium Alloys. ASM International, Materials Park, Ohio (1999)Google Scholar
  75. 75.
    Friedrich, H.E., Mordike, B.L.: Magnesium Technology: Metallurgy, Design Data, Automotive Applications. Springer, Berlin (2006)Google Scholar
  76. 76.
    Chawla, K.K., Chawla, N. Metal Matrix Composites. Wiley (2004)Google Scholar
  77. 77.
    Hassan, S.F., Gupta, M.: Development of ductile magnesium composite materials using titanium as reinforcement. J. Alloys Compd. 345, 246–251 (2002)CrossRefGoogle Scholar
  78. 78.
    Shanthi, M., Jayaramanavar, P., Vyas, V., et al.: Effect of niobium particulate addition on the microstructure and mechanical properties of pure magnesium. J. Alloys Compd. 513, 202–207 (2012). doi: 10.1016/j.jallcom.2011.10.019 CrossRefGoogle Scholar
  79. 79.
    Wong, W.L.E., Gupta, M.: Enhancing thermal stability, modulus and ductility of magnesium using molybdenum as reinforcement. Adv. Eng. Mater. 7, 250–256 (2005). doi: 10.1002/adem.200400137 CrossRefGoogle Scholar
  80. 80.
    Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L.: Binary Alloy Phase Diagrams. vol. 3, p. 2526. ASM International (1990)Google Scholar
  81. 81.
    Dieter, G.E.: Mechanical metallurgy. McGraw-Hill, London, UK (1986)Google Scholar
  82. 82.
    Reed-Hill, R.E.: Role of deformation twinning in determining the mechanical properties of metals. In: The Inhomogeneity of Plastic Deformation, p. 285. ASM International, Materials Park, OH, USA (1973)Google Scholar
  83. 83.
    Barnett, M.R.: Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A 464, 1–7 (2007). doi: 10.1016/j.msea.2006.12.037 CrossRefGoogle Scholar
  84. 84.
    Wang, Y.N., Huang, J.C.: Texture analysis in hexagonal materials. Mater. Chem. Phys. 81, 11–26 (2003). doi: 10.1016/S0254-0584(03)00168-8 CrossRefGoogle Scholar
  85. 85.
    Kleiner, S., Uggowitzer, P.J.: Mechanical anisotropy of extruded Mg–6 % Al–1 % Zn alloy. Mater. Sci. Eng. A 379, 258–263 (2004). doi: 10.1016/j.msea.2004.02.020 CrossRefGoogle Scholar
  86. 86.
    Agnew, S.R., Mehrotra, P., Lillo, T.M., et al.: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: experiments and simulations. Acta. Mater. 53, 3135–3146 (2005). doi: 10.1016/j.actamat.2005.02.019 CrossRefGoogle Scholar
  87. 87.
    Hammond, V.H.: Magnesium Nanocomposites: Current Status and Prospects for Army Applications. ARL–TR–5728 (2011)Google Scholar
  88. 88.
    Paramsothy, M., Chan, J., Kwok, R., Gupta, M.: Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement. J. Nanomater. 2011, 1–9 (2011). doi: 10.1155/2011/642980 CrossRefGoogle Scholar
  89. 89.
    Sun, K., Shi, Q.Y., Sun, Y.J., Chen, G.Q.: Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mater. Sci. Eng. A 547, 32–37 (2012). doi: 10.1016/j.msea.2012.03.071 CrossRefGoogle Scholar
  90. 90.
    Radi, Y., Mahmudi, R.: Effect of Al2O3 nano-particles on the microstructural stability of AZ31 Mg alloy after equal channel angular pressing. Mater. Sci. Eng. A 527, 2764–2771 (2010). doi: 10.1016/j.msea.2010.01.029 CrossRefGoogle Scholar
  91. 91.
    Cao, G., Konishi, H., Li, X.: Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Mater. Sci. Eng. A 486, 357–362 (2008). doi: 10.1016/j.msea.2007.09.054 CrossRefGoogle Scholar
  92. 92.
    Gupta, M., Sharon, N.M.L.: Magnesium, Magnesium Alloys, and Magnesium Composites. Wiley, New Jersey (2011)Google Scholar
  93. 93.
    Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432–1439 (2008). doi: 10.1016/j.compscitech.2007.10.057 CrossRefGoogle Scholar
  94. 94.
    Suryanarayana, C., Al-Aqeeli, N.: Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383–502 (2013). doi: 10.1016/j.pmatsci.2012.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Lorella Ceschini
    • 1
  • Arne Dahle
    • 2
  • Manoj Gupta
    • 3
  • Anders Eric Wollmar Jarfors
    • 4
  • S. Jayalakshmi
    • 5
  • Alessandro Morri
    • 6
  • Fabio Rotundo
    • 7
  • Stefania Toschi
    • 8
  • R. Arvind Singh
    • 9
  1. 1.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  2. 2.School of EngineeringJönköping UniversityJönköpingSweden
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.School of EngineeringJönköping UniversityJönköpingSweden
  5. 5.Department of Mechanical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia
  6. 6.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  7. 7.Interdepartmental Center for Industrial Research-Advanced Mechanics and Materials (CIRI-MAM)Alma Mater Studiorum–University of BolognaBolognaItaly
  8. 8.Department of Industrial Engineering (DIN)Alma Mater Studiorum–University of BolognaBolognaItaly
  9. 9.Department of Aeronautical EngineeringBannari Amman Institute of Technology (BIT)SathyamangalamIndia

Personalised recommendations