Skip to main content

Degenerate Metrics and Their Applications to Spacetime

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

  • 1337 Accesses

Abstract

The Lie groups preserving degenerate quadratic forms appear in various contexts related to spacetime. The homogeneous Galilei group is the intersection of two such groups. The structure group of sub-Riemannian geometry and of singular semi-Riemannian geometry, as well as of some submanifolds of semi-Riemannian manifolds, is of this kind. Such groups are shown to replace the Lorentz group at a very large class of singularities in general relativity. Also, these groups are shown to be fundamental in Kaluza-Klein theory and in gauge theory, where they provide an explanation why we may not be able to probe extra-dimensional lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Kupeli. Degenerate manifolds. Geom. Dedicata, 23(3):259–290, 1987.

    Google Scholar 

  2. D. Kupeli. Singular Semi-Riemannian Geometry. Kluwer Academic Publishers Group, 1996.

    Google Scholar 

  3. O. C. Stoica. On singular semi-Riemannian manifolds. Int. J. Geom. Methods Mod. Phys., 11(5):1450041, 2014.

    Google Scholar 

  4. É. Cartan. Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). In Ann. Sci. Éc. Norm. Supér., volume 40, pages 325–412. Société mathématique de France, 1923.

    Google Scholar 

  5. H.-P. Künzle. Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. In Annales de l’IHP Physique théorique, volume 17, pages 337–362, 1972.

    Google Scholar 

  6. Dan Barbilian. Galileische Gruppen und quadratische Algebren. Bull. Math. Soc. Roumaine Sci., page XLI, 1939.

    Google Scholar 

  7. R. Kerner. Generalization of the Kaluza–Klein theory for an arbitrary non-abelian gauge group. Technical report, Univ., Warsaw, 1968. http://www.numdam.org/item?id=AIHPA_1968__9_2_143_0.

  8. R. Penrose. Gravitational Collapse and Space-Time Singularities. Phys. Rev. Lett., 14(3):57–59, 1965.

    Google Scholar 

  9. O. C. Stoica. Einstein equation at singularities. Cent. Eur. J. Phys, 12:123–131, 2014.

    Google Scholar 

  10. O. C. Stoica. On the Weyl curvature hypothesis. Ann. of Phys., 338:186–194, 2013. http://arxiv.org/abs/1203.3382 arXiv:gr-qc/1203.3382.

  11. O. C. Stoica. The Friedmann-Lemaître-Robertson-Walker big bang singularities are well behaved. Int. J. Theor. Phys., pages 1–10, 2015.

    Google Scholar 

  12. O. C. Stoica. Warped products of singular semi-Riemannian manifolds. Arxiv preprint math.DG/1105.3404, 2011. http://arxiv.org/abs/1105.3404 arXiv:math.DG/1105.3404.

  13. A. S. Eddington. A Comparison of Whitehead’s and Einstein’s Formulae. Nature, 113:192, 1924.

    Google Scholar 

  14. D. Finkelstein. Past-future asymmetry of the gravitational field of a point particle. Phys. Rev., 110(4):965, 1958.

    Google Scholar 

  15. O. C. Stoica. Schwarzschild singularity is semi-regularizable. http://dx.doi.org/10.1140/epjp/i2012-12083-1 Eur. Phys. J. Plus, 127(83):1–8, 2012.

  16. O. C. Stoica. http://www.degruyter.com/view/j/auom.2012.20.issue-2/v10309-012-0050-3/v10309-012-0050-3.xml Spacetimes with Singularities. An. Şt. Univ. Ovidius Constanţa, 20(2):213–238, 2012. http://arxiv.org/abs/1108.5099 arXiv:gr-qc/1108.5099.

  17. O. C. Stoica. Analytic Reissner-Nordström singularity. http://stacks.iop.org/1402-4896/85/i=5/a=055004 Phys. Scr, 85(5):055004, 2012.

  18. O. C. Stoica. Kerr-Newman solutions with analytic singularity and no closed timelike curves. U.P.B. Sci Bull. Series A, 77, 2015.

    Google Scholar 

  19. S. Carlip, J. Kowalski-Glikman, R. Durka, and M. Szczachor. Spontaneous dimensional reduction in short-distance quantum gravity? In AIP Conference Proceedings, volume 31, page 72, 2009.

    Google Scholar 

  20. O. C. Stoica. Metric dimensional reduction at singularities with implications to quantum gravity. Ann. of Phys., 347(C):74–91, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Cristinel Stoica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Stoica, O.C. (2016). Degenerate Metrics and Their Applications to Spacetime. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_19

Download citation

Publish with us

Policies and ethics