Skip to main content

Higher-Dimensional Unified Theories with Continuous and Fuzzy Coset Spaces as Extra Dimensions

  • Conference paper
  • First Online:
Book cover Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

  • 1231 Accesses

Abstract

We first briefly review the Coset Space Dimensional Reduction (CSDR) programme and present the results of the best model so far, based on the \(\mathcal {N} = 1\), \(d = 10\), \(E_8\) gauge theory reduced over the nearly-Kähler manifold \(SU(3)/U(1)\times U(1)\). Then, we present the adjustment of the CSDR programme in the case that the extra dimensions are considered to be fuzzy coset spaces and then, the best model constructed in this framework, too, which is the trinification GUT, \(SU(3)^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A coset space is called symmetric when \(f_{ab}^c=0\).

  2. 2.

    The \(S^2\) metric can be expressed in terms of the Killing vectors as \(g^{\alpha \beta }=\dfrac{1}{R^2}\xi ^\alpha _a\xi _a^\beta \).

  3. 3.

    In general, k is a parameter related to the size of the fuzzy coset space. In the case of the fuzzy sphere, k is related to the radius of the sphere and the integer l.

  4. 4.

    Also, \(\text {Tr}\text {tr}_G\) is interpreted as the trace of the U(NP) matrices.

  5. 5.

    See also [45].

  6. 6.

    This embedding is achieved non-uniquely, specifically in \(p_N\) ways, where \(p_N\) is the possible ways one can partition the N into a set of non-increasing, positive integers [46].

  7. 7.

    The number of counter-terms required to eliminate the divergencies is finite.

  8. 8.

    Technically, this is possible because \(N\times N\) matrices can be decomposed on the U(N) generators.

  9. 9.

    Also modulo 3.

  10. 10.

    In case of ordinary reduction of a 10-dimensional \(\mathcal {N}=1\) SYM theory, one obtains an \(\mathcal {N}=4\) SYM Yang-Mills theory in four dimensions having a global \(SU(4)_R\) symmetry which is identified with the tangent space SO(6) of the extra dimensions [16, 17].

  11. 11.

    The SSB terms that will be inserted into \(V_{\mathcal {N}=1}^{proj}(\phi )\), are purely scalar. Although this is enough for our purpose, it is obvious that more SSB terms have to be included too, in order to obtain the full SSB sector [57].

  12. 12.

    Similar approaches have been studied in the framework of YM matrix models [59], lacking phenomenological viability.

  13. 13.

    As anomalous gaining mass by the Green-Schwarz mechanism and therefore they decouple at the low energy sector of the theory [55].

References

  1. Green M.B., Schwarz J.H., Witten E., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987; Green M.B., Schwarz J.H., Witten E., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987; Polchinski J., Cambridge University Press, Cambridge, 1998; Polchinski J., Cambridge University Press, Cambridge, 1998; Blumenhagen R., Lüst D., Theisen S., Springer, 2013.

    Google Scholar 

  2. Gross D.J., Harvey J.A., Martinec E.J., Rohm R., Nuclear Phys. B256 (1985) 253; Gross D.J., Harvey J.A., Martinec E.J., Rohm R., Phys. Rev. Lett. 54 (1985) 502.

    Google Scholar 

  3. Forgács P., Manton N.S., Comm. Math. Phys. 72 (1980) 15–35.

    Google Scholar 

  4. Kapetanakis D., Zoupanos G., Phys. Rep. 219 (1992).

    Google Scholar 

  5. Kubyshin Yu.A., Mourão J.M., Rudolph G., Volobujev I.P., Lecture Notes in Physics, Vol. 349, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  6. Scherk J., Schwarz J.H., Nuclear Phys. B153 (1979) 61–88.

    Google Scholar 

  7. D. L\(\ddot{u}\)st and G. Zoupanos, Phys. Lett. B165 (1985) 309; G. Douzas, T. Grammatikopoulos and G. Zoupanos, Eur. Phys. J. C59 (2009) 917

    Google Scholar 

  8. D. Kapetanakis and G. Zoupanos, Phys. Lett. B249, 73(1990); ibid., Z. Phys. C56, 91 (1992).

    Google Scholar 

  9. Manton N.S., Nuclear Phys. B193 (1981) 502–516.

    Google Scholar 

  10. Chapline G., Slansky R., Nuclear Phys. B209 (1982) 461–483.

    Google Scholar 

  11. P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B258, (1985) 46

    Google Scholar 

  12. Cardoso G.L., Curio G., Dall’Agata G., Lust D., Manousselis P., Zoupanos G., Nucl. Phys. B 652 (2003) 5–34, hep-th/0211118; Strominger A., Nucl. Phys. B274 (1986) 253; Lüst D., Nucl.Phys. B276 (1986) 220; Castellani L., Lüst D., Nucl. Phys. B296 (1988) 143.

    Google Scholar 

  13. K. Becker, M. Becker, K. Dasgupta and P. S. Green, JHEP 0304 (2003) 007, hep-th/0301161; K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, Nucl. Phys. B678 (2004) 19, hep-th/0310058; S. Gurrieri, A. Lukas and A. Micu, Phys. Rev. D70 (2004) 126009, hep-th/0408121; I. Benmachiche, J. Louis and D. Martinez-Pedrera, Class. Quant. Grav. 25 (2008) 135006, arXiv:0802.0410 [hep-th]; A. Micu, Phys. Rev. D 70 (2004) 126002, hep-th/0409008; A. R. Frey and M. Lippert, Phys. Rev. D 72 (2005) 126001, hep-th/0507202; P. Manousselis, N. Prezas and G. Zoupanos, Nucl. Phys. B739 (2006) 85, hep-th/0511122; A. Chatzistavrakidis, P. Manousselis and G. Zoupanos, Fortsch. Phys. 57 (2009) 527, arXiv:0811.2182 [hep-th]; A. Chatzistavrakidis and G. Zoupanos, JHEP 0909 (2009) 077, arXiv:0905.2398 [hep-th]; B. P. Dolan and R. J. Szabo, JHEP 0908 (2009) 038, arXiv:0905.4899 [hep-th]; O. Lechtenfeld, C. Nolle and A. D. Popov, JHEP 1009 (2010) 074, arXiv:1007.0236 [hep-th]; A. D. Popov and R. J. Szabo, JHEP 202 (2012) 033, arXiv:1009.3208 [hep-th]; M. Klaput, A. Lukas and C. Matti, JHEP 1109 (2011) 100, arXiv:1107.3573 [hep-th]; A. Chatzistavrakidis, O. Lechtenfeld and A. D. Popov, JHEP 1204 (2012) 114, arXiv:1202.1278 [hep-th]; J. Gray, M. Larfors and D. Lüst,, JHEP 1208 (2012) 099, arXiv:1205.6208 [hep-th]; M. Klaput, A. Lukas, C. Matti and E. E. Svanes, JHEP 1301 (2013) 015, arXiv:1210.5933 [hep-th];

  14. N. Irges and G. Zoupanos, Phys. Lett. B698, (2011) 146, arXiv:hep-ph/1102.2220; N. Irges, G. Orfanidis, G. Zoupanos, arXiv:1205.0753 [hep-ph], PoS CORFU2011 (2011) 105.

  15. Butruille J. -B., arXiv:math.DG/0612655.

  16. P. Manousselis, G. Zoupanos, Phys. Lett. B518 (2001) 171–180, hep-ph/0106033; P. Manousselis, G. Zoupanos, Phys. Lett. B504 (2001) 122–130

    Google Scholar 

  17. P. Manousselis, G. Zoupanos, JHEP 0411 (2004) 025, hep-ph/0406207; P. Manousselis, G. Zoupanos, JHEP 0203 (2002) 002.

    Google Scholar 

  18. Connes A., Academic Press, Inc., San Diego, CA, 1994.

    Google Scholar 

  19. Madore J., London Mathematical Society Lecture Note Series, Vol. 257, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  20. Buric M., Grammatikopoulos T., Madore j., Zoupanos G., JHEP 0604 (2006) 054; Buric M., Madore J., Zoupanos G., SIGMA 3:125,2007, arXiv:0712.4024 [hep-th].

  21. T. Filk, Phys. Lett. B 376 (1996) 53; J. C. Várilly and J. M. Gracia-Bondía, Int. J. Mod. Phys. A 14 (1999) 1305 [hep-th/9804001]; M. Chaichian, A. Demichev and P. Presnajder, Nucl. Phys. B 567 (2000) 360, hepth/9812180; S. Minwalla, M. Van Raamsdonk and N. Seiberg, JHEP 0002 (2000) 020, hep-th/9912072.

    Google Scholar 

  22. H. Grosse and R. Wulkenhaar, Lett. Math. Phys. 71 (2005) 13, hep-th/0403232.

    Google Scholar 

  23. H. Grosse and H. Steinacker, Adv. Theor. Math. Phys. 12 (2008) 605, hep-th/0607235; H. Grosse and H. Steinacker, Nucl. Phys. B 707 (2005) 145, hep-th/0407089.

    Google Scholar 

  24. Connes A., Lott J., Nuclear Phys. B Proc. Suppl. 18 (1991), 29–47; Chamseddine A.H., Connes A., Comm. Math. Phys. 186 (1997), 731–750, hep-th/9606001; Chamseddine A.H., Connes A., Phys. Rev. Lett. 99 (2007), 191601, arXiv:0706.3690.

  25. Martín C.P., Gracia-Bondía M.J., Várilly J.C., Phys. Rep. 294 (1998), 363–406, hep-th/9605001.

    Google Scholar 

  26. Dubois-Violette M., Madore J., Kerner R., Phys. Lett. B217 (1989), 485–488; Dubois-Violette M., Madore J., Kerner R., Classical Quantum Gravity 6 (1989), 1709–1724; Dubois-Violette M., Kerner R., Madore J., J. Math. Phys. 31 (1990), 323–330.

    Google Scholar 

  27. Madore J., Phys. Lett. B 305 (1993), 84–89; Madore J., (Sobotka Castle, 1992), Fund. Theories Phys., Vol. 52, Kluwer Acad. Publ., Dordrecht, 1993, 285–298. hep-ph/9209226.

    Google Scholar 

  28. Connes A., Douglas M.R., Schwarz A., JHEP (1998), no.2, 003, hep-th/9711162.

    Google Scholar 

  29. Seiberg N., Witten E., JHEP (1999), no.9, 032, hep-th/9908142.

    Google Scholar 

  30. N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, Nucl. Phys. B498 (1997) 467, arXiv:hep-th/9612115.

  31. Jurčo B., Schraml S., Schupp P., Wess J., Eur. Phys. J. C 17 (2000), 521–526, hep-th/0006246; Jurčo B., Schupp P., Wess J., Nuclear Phys. B 604 (2001), 148–180, hep-th/0102129; Jurčo B., Moller L., Schraml S., Schupp S., Wess J., Eur. Phys. J. C 21 (2001), 383–388, hep-th/0104153; Barnich G., Brandt F., Grigoriev M., JHEP (2002), no.8, 023, hep-th/0206003.

    Google Scholar 

  32. Chaichian M., Prešnajder P., Sheikh-Jabbari M.M., Tureanu A., Eur. Phys. J. C 29 (2003), 413–432, hep-th/0107055.

    Google Scholar 

  33. Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., Eur. Phys. J. C 23 (2002), 363–376, hep-ph/0111115; Aschieri P., Jurčo B., Schupp P., Wess J., Nuclear Phys. B 651 (2003), 45–70, hep-th/0205214; Behr W., Deshpande N.G., Duplancic G., Schupp P., Trampetic J., Wess J., Eur. Phys. J. C29: 441–446, 2003.

    Google Scholar 

  34. Aschieri P., Madore J., Manousselis P., Zoupanos G., JHEP (2004), no. 4, 034, hep-th/0310072; Aschieri P., Madore J., Manousselis P., Zoupanos G., Fortschr. Phys. 52 (2004), 718–723, hep-th/0401200; Aschieri P., Madore J., Manousselis P., Zoupanos G., Conference: C04-08-20.1 (2005) 135–146, hep-th/0503039.

    Google Scholar 

  35. Aschieri P., Grammatikopoulos T., Steinacker H., Zoupanos G., JHEP (2006), no. 9, 026, hep-th/0606021; Aschieri P., Steinacker H., Madore J., Manousselis P., Zoupanos G., arXiv:0704.2880.

  36. Steinacker H., Zoupanos G., JHEP (2007), no. 9, 017, arXiv:0706.0398.

  37. A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Fortsch. Phys. 58 (2010) 537–552, arXiv:0909.5559 [hep-th].

  38. A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, JHEP 1005 (2010) 100, arXiv:hep-th/1002.2606 A. Chatzistavrakidis and G. Zoupanos, SIGMA 6 (2010) 063, arXiv:hep-th/1008.2049.

  39. C. Wetterich, Nucl. Phys. B222, 20 (1983); L. Palla, Z.Phys. C 24, 195 (1984); K. Pilch and A. N. Schellekens, J. Math. Phys. 25, 3455 (1984); P. Forgacs, Z. Horvath and L. Palla, Z. Phys. C30, 261 (1986); K. J. Barnes, P. Forgacs, M. Surridge and G. Zoupanos, Z. Phys. C33, 427 (1987).

    Google Scholar 

  40. G. Chapline and N. S. Manton, Nucl. Phys. B184, 391 (1981); F.A.Bais, K. J. Barnes, P. Forgacs and G. Zoupanos, Nucl. Phys. B263, 557 (1986); Y. A. Kubyshin, J. M. Mourao, I. P. Volobujev, Int. J. Mod. Phys. A 4, 151 (1989).

    Google Scholar 

  41. J. Harnad, S. Shnider and L. Vinet, J. Math. Phys. 20, 931 (1979); 21, 2719 (1980); J. Harnad, S. Shnider and J. Tafel, Lett. Math. Phys. 4, 107 (1980).

    Google Scholar 

  42. K. Farakos, G. Koutsoumbas,M. Surridge and G. Zoupanos, Nucl. Phys. B291, 128 (1987); ibid., Phys. Lett. B191, 135 (1987).

    Google Scholar 

  43. Andrews, R.P. et al. Nucl. Phys. B751 (2006) 304–341 hep-th/0601098 SWAT-06-455

    Google Scholar 

  44. Madore J., Schraml S., Schupp P., Wess J., Eur. Phys. J. C 16 (2000) 161–167, hep-th/0001203.

    Google Scholar 

  45. Harland D., Kurkçuoǧlu S., Nucl. Phys. B 821 (2009), 380–398, arXiv:0905.2338.

  46. Madore J., Classical Quantum Gravity 9 (1992), 69–87.

    Google Scholar 

  47. Kachru S., Silverstein E., Phys. Rev. Lett. 80 (1998), 4855–4858, hep-th/9802183.

    Google Scholar 

  48. Steinacker H., Nuclear Phys. B 679 (2004), 66-98, hep-th/0307075.

    Google Scholar 

  49. Kim J.E., Phys. Lett. B 564 (2003), 35–41, hep-th/0301177; Choi K.S., Kim J.E., Phys. Lett. B 567 (2003), 87–92, hep-ph/0305002.

    Google Scholar 

  50. J. Maalampi and M. Roos, Phys. Rept. 186 (1990) 53.

    Google Scholar 

  51. Brink L., Schwarz J.H., Scherk J., Nucl. Phys. B 121 (1977), 77–92; Gliozzi F., Scherk J., Olive D.I., Nucl. Phys. B 122 (1977), 253–290.

    Google Scholar 

  52. Douglas M.R., Greene B.R., Morrison D.R., Nuclear Phys. B 506 (1997), 84–106, hep-th/9704151.

    Google Scholar 

  53. Bailin D., Love A., Phys. Rep. 315 (1999), 285–408.

    Google Scholar 

  54. Aldazabal G., Ibáñez L.E., Quevedo F., Uranga A.M., JHEP (2000), no. 8, 002, hep-th/0005067.

    Google Scholar 

  55. Lawrence A.E., Nekrasov N., Vafa C.,Nuclear Phys. B 533 (1998), 199–209, hep-th/9803015.

    Google Scholar 

  56. Kiritsis E., Phys. Rep. 421 (2005), 105–190, Erratum, Phys. Rep. 429 (2006), 121–122, hep-th/0310001.

    Google Scholar 

  57. Djouadi A., Phys. Rep. 459 (2008), 1–241, hep-ph/0503173.

    Google Scholar 

  58. Steinacker H., Springer Proceedings in Physics, Vol. 98, Springer, Berlin, 2005, 307–311, hep-th/0409235.

    Google Scholar 

  59. H. Grosse, F. Lizzi and H. Steinacker, Phys.Rev. D81 (2010) 085034, arXiv:1001.2703 [hep-th]; H. Steinacker, Nucl. Phys. B 810 (2009) 1, arXiv:0806.2032 [hep-th].

  60. Glashow S.L., Published in Providence Grand Unif.1984:0088, 88–94.

    Google Scholar 

  61. Rizov V.A., Bulg. J. Phys. 8 (1981), 461–477.

    Google Scholar 

  62. E. Ma, M. Mondragon and G. Zoupanos, JHEP 0412 (2004) 026; S. Heinemeyer, E. Ma, M. Mondragon and G. Zoupanos, AIP Conf. Proc. 1200 (2010) 568, arXiv:0910.0501 [hep-th].

  63. Ma E., Mondragón M., Zoupanos G., JHEP (2004), no. 12, 026, hep-ph/0407236.

    Google Scholar 

  64. Lazarides G., Panagiotakopoulos C., Phys. Lett. B 336 (1994), 190–193, hep-ph/9403317.

    Google Scholar 

  65. Babu K.S., He X.G., Pakvasa S., Phys. Rev. D 33 (1986), 763–772.

    Google Scholar 

  66. Leontaris G.K., Rizos J., Phys. Lett. B 632 (2006), 710–716, hep-ph/0510230.

    Google Scholar 

  67. S. Heinemeyer, M. Mondragon and G. Zoupanos, Int.J.Mod.Phys. A29 (2014) 18, hep-ph/1430032.

    Google Scholar 

  68. M. Mondragon, N. Tracas and G. Zoupanos, arXiv:1403.7384 [hep-th].

  69. S. Heinemeyer, M. Mondragon and G. Zoupanos, SIGMA 6 (2010) 049, arXiv:1001.0428 [hep-th].

  70. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos, PoS CORFU2011, PoC: C11-09-04.1, arXiv:1204.6498 [hep-th].

  71. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos, JHEP 1109 (2011) 115, arXiv:1107.0265 [hep-th]

  72. T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D 55 (1997) 5112, hep-th/9610043.

    Google Scholar 

  73. I. Chepelev, Y. Makeenko and K. Zarembo, Phys. Lett. B 400 (1997) 43 [hep-th/9701151]; A. Fayyazuddin and D. J. Smith, Mod. Phys. Lett. A 12 (1997) 1447, hep-th/9701168; H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Nucl. Phys. B 565 (2000) 176, hep-th/9908141.

    Google Scholar 

  74. S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Nucl. Phys. B 604 (2001) 121, hep-th/0101102; Y. Kimura, Prog. Theor. Phys. 106 (2001) 445, hep-th/0103192; Y. Kitazawa, Nucl. Phys. B 642 (2002) 210, hep-th/0207115.

    Google Scholar 

  75. H. Aoki, S. Iso and T. Suyama, Nucl. Phys. B 634 (2002) 71, arXiv:hep-th/0203277.

Download references

Acknowledgements

This research is supported by the Research Funding Program ARISTEIA, Higher Order Calculations and Tools for High Energy Colliders, HOCTools and the ARISTEIA II, Investigation of certain higher derivative term field theories and gravity models (co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF)), by the European Union’s ITN programme HIGGSTOOLS, as well as by the Action MP1405 QSPACE from the European Cooperation in Science and Technology (COST). G.Z. would like to thank the organizers and ITP-Heidelberg for the warm and generous hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zoupanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Manolakos, G., Zoupanos, G. (2016). Higher-Dimensional Unified Theories with Continuous and Fuzzy Coset Spaces as Extra Dimensions. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_13

Download citation

Publish with us

Policies and ethics