Skip to main content

Hyperlogarithms and Periods in Feynman Amplitudes

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics (LT 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 191))

Included in the following conference series:

Abstract

The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990s. The present lecture provides a concise introduction to a fast developing subject that attracts the interests of a wide range of specialists – from number theorists to particle physicists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To cite a few: “Loops and Legs in Quantum Field Theory” Bi-annual Workshop taking place (since 2008) in various towns in Germany; Durham Workshop: “Polylogarithms as a Bridge between Number Theory and Particle Physics” [43]; Research Trimester “Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory”, ICMAT, Madrid, 2014, [39, 40].

  2. 2.

    Nowadays the term is usually associated with the Dedekind \(\eta \)-function \(\eta (\tau ) = e^{i \frac{\pi \tau }{12}} \overset{\infty }{\underset{n=1}{\prod }} \, (1-q^n)\), \(q = e^{2\pi i \tau }\), defined on the upper half plane \(\tau \).

  3. 3.

    We use, following [13, 36], concatenation to the right. Other authors [8, 24] use the opposite convention.

References

  1. S. Abreu, R. Britto, C. Duhr, E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, arXiv:1401.3546v2 [hep-th].

  2. L. Adams, C. Bogner, S. Weinzierl, A walk on the sunset boulevard, arXiv:1601.03646 [hep-ph].

  3. R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974) 1067–1086.

    Google Scholar 

  4. S. Bloch, H. Esnault, D. Kreimer, On motives and graph polynomials, Commun. Math. Phys. 267 (2006) 181–225; math/0510011.

    Google Scholar 

  5. S. Bloch, M. Kerr, P. Vanhove, A Feynman integral via higher normal functions, arXiv:1406.2664v3 [hep-th]; Local mirror symmetry and the sunset Feynman integral, arXiv:1601.08181 [hep-th].

  6. C. Bogner, S. Weinzierl, Periods and Feynman integrals, J. Math. Phys. 50 (2009) 042302; arXiv:0711.4863v2 [hep-th].

    Google Scholar 

  7. D.J. Broadhurst, Multiple zeta values and modular forms in quantum field theory, C. Schneider, J. Blümlein (eds.), Computer Algebra abd Quantum Field Theory, Texts and Monographs in Symbolic Computations, Wien, Springer 2013.

    Google Scholar 

  8. D.J. Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th].

  9. D.J. Broadhurst, D. Kreimer, Knots and numbers in \(\phi ^4\) to 7 loops and beyond, Int. J. Mod. Phys. 6C (1995) 519–524, hep-ph/9504352; Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B393 (1997) 403–412; hep-th/9609128.

    Google Scholar 

  10. F. Brown, Single-valued hyperlogarithms and unipotent differential equations, IHES notes, 2004.

    Google Scholar 

  11. F. Brown, Single valued multiple polylogarithms in one variable, C.R. Acad. Sci. Paris Ser. I 338 (2004) 522–532.

    Google Scholar 

  12. F. Brown, Iterated integrals in quantum field theory, in: Geometric and Topological Methods for Quantum Field Theory, Proceedings of the 2009 Villa de Leyva Summer School, Eds. A Cardona et al., Cambridge Univ. Press, 2013, pp. 188–240.

    Google Scholar 

  13. F. Brown, On the decomposition of motivic multiple zeta values, Advanced Studies in Pure Mathematics 63 (2012) 31–58; arXiv:1102.1310v2 [math.NT].

  14. F. Brown, Mixed Tate motives over \(\mathbb{Z} \), Annals of Math. 175:1 (2012) 949–976; arXiv:1102.1312 [math.AG].

  15. F. Brown, Single-valued periods and multiple zeta values, arXiv:1309.5309 [math.NT].

  16. F. Brown, Multiple modular values for \(SL(2,\mathbb{Z} )\), arXiv:1407.5167.

  17. F. Brown, Periods and Feynman amplitudes, Talk at the ICMP, Santiago de Chile, arXiv:1512.09265 [math-ph]; – Notes on motivic periods; arXiv:1512.06409v2 [math-ph]; arXiv:1512.06410 [math.NT].

  18. F. Brown, O. Schnetz, Proof of the zig-zag conjecture, arXiv:1208.1890v2 [math.NT].

  19. F. Brown, O. Schnetz, Modular forms in quantum field theory, arXiv:1304.5342v2 [math.AG].

  20. J. Broedel, O. Schlotterer, S. Stieberger, Polylogarithms, Multiple Zeta Values and superstring amplitudes, Fortschr. Phys. 61 (2013) 812–870; arXiv:1304.7267v2 [hep-th].

    Google Scholar 

  21. K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831–879.

    Google Scholar 

  22. P. Deligne, Multizetas d’aprés Francis Brown, Séminaire Bourbaki 64ème année, n. 1048.

    Google Scholar 

  23. J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington, V.A. Smirnov, Leading singularities and off shell conformal amplitudes, JHEP 1308 (2013) 133; arXiv:1303.6909v2 [hep-th].

  24. C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [hep-ph].

  25. D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, Pulling the straps of polygons, JHEP 1112 (2011) 011; arXiv:1102.0062 [hep-th].

  26. A. Goncharov, Galois symmetry of fundamental groupoids and noncommutative geometry, Duke Math. J. 128:2 (2005) 209–284; math/0208144v4.

    Google Scholar 

  27. B. Hayes, g-ology, Amer. Scientist 92 (2004) 212–216.

    Google Scholar 

  28. T. Kinoshita, Tenth-order QED contribution to the electron \(g-2\) and high precision test of quantum electrodynamics, in: Proceedings of the Conference in Honor of te 90th Birthday of Freeman Dyson, World Scientific, 2014, pp. 148–172.

    Google Scholar 

  29. M. Kontsevich, D. Zagier, Periods, in:Mathematics - 20101 and beyond, B. Engquist, W. Schmid, eds., Springer, Berlin et al. 2001, pp. 771–808.

    Google Scholar 

  30. S. Laporta, E. Remiddi, The analytical value of the electron \(g-2\) at order \(\alpha ^3\) in QED, Phys. Lett. B379 (1996) 283–291; arXiv:hep-ph/9602417.

  31. N.M. Nikolov, R. Stora, I. Todorov, Renormalization of massless Feynman amplitudes as an extension problem for associate homogeneous distributions, Rev. Math. Phys. 26:4 (2014) 1430002 (65 pages); CERN-TH-PH/2013-107; arXiv:1307.6854 [hep-th].

    Google Scholar 

  32. E. Panzer, Feynman integrals via hyperlogarithms, Proc. Sci. bf 211 (2014) 049; arXiv:1407.0074 [hep-ph]; Feynman integrals and hyperlogarithms, PhD thesis, 220 p. 1506.07243 [math-ph].

  33. E. Remiddi, L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two loop massive sunrise and the kite integral, arXiv:1602.01481 [hep-th].

  34. L. Schneps, Survey of the theory of multiple zeta values, 2011.

    Google Scholar 

  35. O. Schnetz, Quantum periods: A census of \(\phi ^4\) transcendentals, Commun. in Number Theory and Phys. 4:1 (2010) 1–48; arXiv:0801.2856v2.

  36. O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. in Number Theory and Phys. 8:4 (2014) 589–685; arXiv:1302.6445v2 [math.NT].

    Google Scholar 

  37. D. Styer, Calculation of the anomalous magnetic moment of the electron, June 2012 (available electronically).

    Google Scholar 

  38. I. Todorov, Polylogarithms and multizeta values in massless Feynman amplitudes, in: Lie Theory and Its Applications in Physics (LT10), ed. V. Dobrev, Springer Proceedings in Mathematics and Statistics, 111, Springer, Tokyo 2014; pp. 155–176; IHES/P/14/10.

    Google Scholar 

  39. I. Todorov, Perturbative quantum field theory meets number theory, Expanded version of a talk at the 2014 ICMAT Research Trimester Multiple Zeta Values, Multiple Polylogarithms and Quantum Field Theory, Madrid, Springer Proceedings in Mathematics and Statistics, 2016; IHES/P/16/02.

    Google Scholar 

  40. C. Vergu, Polylogarithm identities, cluster algebras and the \(N=4\) supersymmetric theory, 2014 ICMAT Research Trimester. Multiple Zeta Values Multiple Polylogarithms and Quantum Field Theory, arXiv:1512.08113 [hep-th].

  41. M. Waldschmidt, Lectures on multiple zeta values, Chennai IMSc 2011.

    Google Scholar 

  42. A. Weil, Prehistory of the zeta-function, Number Theory, Trace Formula and Discrete Groups, Academic Press, N.Y. 1989, pp. 1–9.

    Google Scholar 

  43. J. Zhao, Multiple Polylogarithms, Notes for the Workshop Polylogarithms as a Bridge between Number Theory and Particle Physics, Durham, July 3–13, 2013.

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank V. Dobrev for the invitation to Varna and for his careful editorial work. I thank IHES and the Theoretical Physics Department of CERN for hospitality during the preparation of this text. The author’s work is supported in part by Grant DFNI T02/6 of the Bulgarian National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Todorov, I. (2016). Hyperlogarithms and Periods in Feynman Amplitudes. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. LT 2015. Springer Proceedings in Mathematics & Statistics, vol 191. Springer, Singapore. https://doi.org/10.1007/978-981-10-2636-2_10

Download citation

Publish with us

Policies and ethics