Shape Optimization Approach by Traction Method to Inverse Free Boundary Problems

  • Shogen Shioda
  • Ahsani Ummi Maharani
  • Masato KimuraEmail author
  • Hideyuki Azegami
  • Kohji Ohtsuka
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 26)


The importance of the optimal shape design has been increasing in the present industrial design due to the request to make their production more efficient.


  1. 1.
    Allaire, G.: Shape optimization by the homogenization method. Applied Mathematical Sciences, vol. 146, Springer (2002)Google Scholar
  2. 2.
    Azegami, H., Takeuchi, K.: A smoothing method for shape optimization: traction method using the Robin condition. Int. J. Comput. Methods 3(1), 21–33 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3-4), 251–265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Henrot, A.: Subsolutions and supersolutions in a free boundary problem. Ark. Mat. 32, 78–98 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Henrot, A., Pierre, M.: About existence of equilibria in electromagnetic casting. Q. Appl. Math. 49(3), 563–575 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kawarada, H., Sawaguri, T., Imai, H.: An approximate resolution of a free boundary problem appearing in the equilibrium plasma by means of conformal mapping. Jpn. J. Appl. Math. 6, 331–340 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kimura, M.: Geometry of hypersurfaces and moving hypersurfaces in \(R^m\)—for the study of moving boundary problems—. Jindřich Nečas Center for Mathematical Modeling Lecture notes Volume IV, Topics in Mathematical Modeling, pp. 39–93 (2008)Google Scholar
  8. 8.
    Maharani, A.U., Kimura, M., Azegami, H., Ohtsuka, K., Armanda, I.: Shape optimization approach to a free boundary problem. Recent Dev. Comput. Sci. 6, 42–55 (2015)Google Scholar
  9. 9.
    Morisue, T., Yajima, T., Kume, T., Fujimori, S.: Analysis of electromagnetic force for shaping the free surface of a molten metal in a cold crucible. IEEE Trans. Magn. 29(2), 1562–1565 (1993)CrossRefGoogle Scholar
  10. 10.
    Onodera, M.: Geometric flows for quadrature identities. Math. Ann. 361, 77–106 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer (1984)Google Scholar
  12. 12.
    Sokolowski, J., Zolésio, J.-P.: Introduction to shape optimization: shape sensitivity analysis. Springer (1992)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shogen Shioda
    • 1
  • Ahsani Ummi Maharani
    • 2
  • Masato Kimura
    • 1
    Email author
  • Hideyuki Azegami
    • 3
  • Kohji Ohtsuka
    • 4
  1. 1.Kanazawa UniversityKanazawaJapan
  2. 2.Bandung Institute of TechnologyBandungIndonesia
  3. 3.Nagoya UniversityNagoyaJapan
  4. 4.Hiroshima Kokusai Gakuin UniversityHiroshimaJapan

Personalised recommendations